Artículo

Scervino, J.M.; Mesa, M.P.; della Mónica, I.; Recchi, M.; Moreno, N.S.; Godeas, A. "Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization" (2010) Biology and Fertility of Soils. 46(7):755-763
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Phosphorus availability is a major limiting factor for yield of most crop species. The objective of this study was to compare the solubilization of three sources of phosphorus (P) by different fungal isolates and to determine the possible mechanisms involved in the process. Talaromyces flavus (S73), T. flavus var flavus (TM), Talaromyces helicus (L7b) and T. helicus (N24), Penicillium janthinellum (PJ), and Penicillium purpurogenum (POP), fungal strains isolated from the rhizosphere of crops, are known to be biocontrol agents against pathogenic fungi. The P solubilization efficiency of these fungal strains in liquid media supplemented either with tricalcium phosphate (Ca3(PO4)2; PC), aluminum phosphate (AlPO4; AP), or phosphorite (PP) depended on the source of P and the fungal species. The type and concentration of organic acids produced by each species varied according to the source of available P. In the medium supplemented with PC, the highest proportion was that of gluconic acid, whereas in the media supplemented with the other P sources, the highest proportion was that of citric and valeric acids. This suggests that the release of these organic compounds in the rhizosphere by these microorganisms may be important in the solubilization of various inorganic P compounds. Results also support the hypothesis that the simultaneous production of different organic acids by fungi may enhance their potential for solubilizing insoluble phosphate. © 2010 Springer-Verlag.

Registro:

Documento: Artículo
Título:Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization
Autor:Scervino, J.M.; Mesa, M.P.; della Mónica, I.; Recchi, M.; Moreno, N.S.; Godeas, A.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 4P Ciudad Universitaria, 1428 Buenos Aires, Argentina
Depto de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia
Palabras clave:Organic acids; Penicillum; Phosphate-solubilizing microorganisms; Phosphorus; Talaromyces; antibiotics; biocontrol agent; citric acid; crop yield; fungus; pathogenicity; phosphorus; rhizosphere; soil organic matter; solubilization; Fungi; Penicillium janthinellum; Penicillium purpurogenum; Talaromyces; Talaromyces flavus; Talaromyces helicus
Año:2010
Volumen:46
Número:7
Página de inicio:755
Página de fin:763
DOI: http://dx.doi.org/10.1007/s00374-010-0482-8
Título revista:Biology and Fertility of Soils
Título revista abreviado:Biol. Fertil. Soils
ISSN:01782762
CODEN:BFSOE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01782762_v46_n7_p755_Scervino

Referencias:

  • Asea, P.E.A., Kucey, R.M.N., Stewart, J.W.B., Inorganic phosphate solubilization by two Penicillium species in solution culture and soil (1988) Soil Biol Biochem, 20, pp. 459-464
  • Barroso, C.B., Pereira, G.T., Nahas, E., Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon a nitrogen source (2006) Braz J Microbiol, 37, pp. 434-438
  • Burgstaller, W., Strasser, H., Schinner, F., Solubilization of zinc oxide from filter dust with Penicillium simplicissimum; bioreactor, leaching and stoichiometry (1992) Environ Sci Technol, 26, pp. 340-346
  • Cunningham, J., Kuiack, C., Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii (1992) Appl Environ Microbiol, 85, pp. 1451-1458
  • Eckhardt, F.E.W., Über die Einwirkung heterotropher Mikroorganismen auf die Zersetzung silikatischer Minerale (1979) Z Pflanzenerntihr Bodenkund, 142, pp. 434-445
  • El-Zouni, I.M., Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants (2008) J Appl Sci Res, 4, pp. 592-598
  • Gadagi, R.S., Shin, W.S., Sa, T.M., Malic acid mediated aluminum phosphate solubilization by Penicillium oxalicum CBPS-3F-Tsa isolated from Korean paddy rhizosphere soil (2007) First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences, 102, pp. 286-290. , E. Velasuez and C. Rodriguez-Barrueco (Eds.), Berlin: Springer
  • Gerretsen, F.C., The influence of microorganisms on the phosphorus uptake by the plants (1948) Plant Soil, 1, pp. 51-81
  • Gyaneshwar, G., Kumar, N., Parekh, L.J., Effect of buffering on the phosphate-solubilizing ability of microorganisms P (1998) J Microbiol Biotechnol, 14, pp. 669-673
  • Harrison, M.J., Pacha, R.E., Morita, R.Y., Solubilization of inorganic phosphates by bacteria isolated from Upper Klamath Lake Sediment (1972) Limnol Oceanogr, 17, pp. 50-57
  • Illmer, P., Schinner, F., Solubilization of inorganic phosphates by microorganisms isolated from forest soils (1992) Soil Biol Biochem, 24, pp. 389-395
  • Illmer, P., Schinner, F., Solubilization of inorganic calcium phosphates-solubilization mechanisms (1995) Soil Biol Biochem, 27, pp. 257-263
  • Illmer, P., Barbato, A., Schinner, F., Solubilization of hardly-soluble AlPO4, with P-solubilizing microorganisms (1995) Soil Biol Biochem, 27, pp. 265-270
  • Kang, S., Chul, G.H., Lee, T.G., Maheshwari, D.K., Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102 (2002) Curr Sci, 82, pp. 439-442
  • Kpomblekou, A.K., Tabatabai, M.A., Effect of organic acids on the release of phosphorus from phosphate rocks (1994) Soil Sci, 158, pp. 442-448
  • Lin, T., Huang, H., Shen, F., Young, C., The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74 (2006) Bioresour Technol, 97, pp. 957-960
  • Liu, S.T., Lee, L.Y., Tai, C.Y., Hung, C.H., Chang, Y.S., Wolfram, J.H., Rogers, R., Goldstein, A.H., Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilisation in E. coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone (1992) J Bacteriol, 174, pp. 5814-5819
  • McLaughlin, M.J., Alston, A.M., Martin, J.K., Phosphorus cycling in wheat-pasture rotations. II. The role of the microbial biomass in phosphorus cycling (1988) Aust J Soil Res, 26, pp. 333-342
  • Mehta, A., Torma, A.E., Murr, L.E., Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi (1979) Biotechnol Bioeng, 21, pp. 875-885
  • Nautiyal, C.S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270
  • Oliveira, C.A., Alves, V.M.C., Marriel, I.E., Gomes, E.A., Scotti, M.R., Carneiro, N.P., Guimarães, C.T., Sa, N.M.H., Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome (2009) Soil Biol Biochem, 41, pp. 1782-1787
  • Pitt, J.I., (1979) The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces, p. 634. , London: Academic
  • Pradhan, N., Sukla, L.B., Solubilization of inorganic phosphates by fungi isolated from agriculture soil (2005) Afr J Biotechnol, 5, pp. 850-854
  • Richardson, A.E., Hadobas, P.A., Hayes, J.E., O'Hara, C.P., Simpson, R.J., Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms (2001) Plant Soil, 229, pp. 47-56
  • Rodriguez, H., Gonzalez, T., Goire, I., Bashan, Y., Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp (2004) Naturwissenschaften, 91, pp. 552-555
  • Ryan, P.R., Delhaize, E., Jones, D.L., Function and mechanism of organic anion exudation from plant roots (2001) Annu Rev Plant Physiol, 52, pp. 527-560
  • Scheffer, F., Schachtschabel, P., (1992) Lehrbuch Der Bodenkunde, p. 46. , Stuttgart: Ferdinand Enke Verlag
  • Shantaram, M.V., Saraswathy, N., Occurrence and activity of phosphate-solubilizing fungi from coconut plantation soils (1985) Plant Soil, 87, pp. 357-364
  • Stephen, J., Jisha, M.S., Buffering reduces phosphate solubilizing ability of selected strains of bacteria (2009) World J Agric Sci, 5, pp. 135-137
  • Vassilev, N., Fenice, M.I., Federici, F., Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16 (2004) Biotechnol Tech, 10, pp. 585-588
  • Vassilev, N., Vassileva, M., Nikolaeva, I., Simultaneous P-solubilizing and biocontrol activity of microorganisms: Potentials and future trends (2006) Appl Microbiol Biotechnol, 71, pp. 137-144
  • Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., Bashan, Y., Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon (2000) Biol Fertil Soils, 30, pp. 460-468
  • Wakelin, S., Warren, R., Harvey, P., Ryder, M., Phosphate solubilization by Penicillium spp. closely associated with wheat roots (2004) Biol Fertil Soils, 40, pp. 36-43
  • Weatherburn, M.W., Phenol-hypochlorite reaction for determination of ammonia (1967) Anal Chem, 39, pp. 971-974
  • Whitelaw, M.A., Growth promotion of plants inoculated with phosphate-solubilizing fungi (2000) Adv Agron, 69, pp. 99-151
  • Xiao, C., Chi, R., Huang, X., Zhang, W., Qiu, G., Wang, D., Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines (2008) Ecol Eng, 33, pp. 187-193

Citas:

---------- APA ----------
Scervino, J.M., Mesa, M.P., della Mónica, I., Recchi, M., Moreno, N.S. & Godeas, A. (2010) . Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 46(7), 755-763.
http://dx.doi.org/10.1007/s00374-010-0482-8
---------- CHICAGO ----------
Scervino, J.M., Mesa, M.P., della Mónica, I., Recchi, M., Moreno, N.S., Godeas, A. "Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization" . Biology and Fertility of Soils 46, no. 7 (2010) : 755-763.
http://dx.doi.org/10.1007/s00374-010-0482-8
---------- MLA ----------
Scervino, J.M., Mesa, M.P., della Mónica, I., Recchi, M., Moreno, N.S., Godeas, A. "Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization" . Biology and Fertility of Soils, vol. 46, no. 7, 2010, pp. 755-763.
http://dx.doi.org/10.1007/s00374-010-0482-8
---------- VANCOUVER ----------
Scervino, J.M., Mesa, M.P., della Mónica, I., Recchi, M., Moreno, N.S., Godeas, A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol. Fertil. Soils. 2010;46(7):755-763.
http://dx.doi.org/10.1007/s00374-010-0482-8