Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The relationship between the Photochemical Reflectance Index (PRI), Normalized Difference Vegetation Index (NDVI) and chlorophyll fluorescence along senescence was investigated in this work. Reflectance and radiance measurements were performed at canopy level in grass species presenting different photosynthetic metabolism: Avena sativa (C3) and Setaria italica (C4), at different stages of the natural senescence process. Sun induced-chlorophyll fluorescence at 760 nm (SIF760) and the apparent fluorescence yield (SIF760/a, with a = irradiance at time of measurement) were extracted from the radiance spectra of canopies using the Fraunhofer Line Discrimination-method. The photosynthetic parameters derived from Kautsky kinetics and pigment content were also calculated at leaf level.Whilst stand level NDVI patterns were related to changes in the structure of canopies and not in pigment content, stand level PRI patterns suggested changes both in terms of canopy and of pigment content in leaves. Both SIF760/a and ΦPSII decreased progressively along senescence in both species. A strong increment in NPQ was evident in A. sativa while in S. italica NPQ values were lower. Our most important finding was that two chlorophyll fluorescence signals, ΦPSII and SIF760/a, correlated with the canopy PRI values in the two grasses assessed, even when tissues at different ontogenic stages were present. Even though significant changes occurred in the Total Chlr/Car ratio along senescence in both studied species, significant correlations between PRI and chlorophyll fluorescence signals might indicate the usefulness of this reflectance index as a proxy of photosynthetic RUE, at least under the conditions of this study. The relationships between stand level PRI and the fluorescence estimators (ΦPSII and SIF760/a) were positive in both cases. Therefore, an increase in PRI values as in the fluorescence parameters would indicate higher RUE. © 2016 Elsevier GmbH.

Registro:

Documento: Artículo
Título:Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence
Autor:Cordon, G.; Lagorio, M.G.; Paruelo, J.M.
Filiación:IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
Área de Educación Agropecuaria, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
INQUIMAE, Universidad de Buenos Aires, CONICET, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Dpto. de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
IECA, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
Palabras clave:Normalized difference vegetation index; Photochemical reflectance index; Photosynthetic parameters; Radiation use efficiency; Senescence; Sun-induced chlorophyll fluorescence; chlorophyll; pigment; Avena; fluorescence; metabolism; photochemistry; photosynthesis; physiology; plant leaf; radiation response; Setaria (plant); time factor; Avena; Chlorophyll; Fluorescence; Photochemical Processes; Photosynthesis; Pigments, Biological; Plant Leaves; Setaria Plant; Time Factors
Año:2016
Volumen:199
Página de inicio:100
Página de fin:110
DOI: http://dx.doi.org/10.1016/j.jplph.2016.05.010
Título revista:Journal of Plant Physiology
Título revista abreviado:J. Plant Physiol.
ISSN:01761617
CODEN:JPPHE
CAS:chlorophyll, 1406-65-1, 15611-43-5; Chlorophyll; Pigments, Biological
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01761617_v199_n_p100_Cordon

Referencias:

  • Asner, G.P., Biophysical and biochemical sources of variability in canopy reflectance (1998) Remote Sens. Environ., 64, pp. 234-253
  • Barton, C.V.M., North, P.R.J., Remote sensing of canopy light use efficiency using the photochemical reflectance index: model and sensitivity analysis (2001) Remote Sens. Environ., 78, pp. 264-273
  • Brugnoli, E., Scartazza, A., De Tullio, M.C., Monteverdi, M.C., Lauteri, M., Augusti, A., Zeaxanthin and non-photochemical quenching in sun and shade leaves of C3 and C4 plants (1998) Physiol. Plant., 104, pp. 727-734
  • Cheng, Y.B., Middleton, E., Zhang, Q., Huemmrich, K., Campbell, P., Corp, L., Integrating solar induced fluorescence and the photochemical reflectance index for estimating gross primary production in a cornfield (2013) Remote Sens., 5, pp. 6857-6879
  • Cordon, G.B., Lagorio, M.G., Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients (2007) Photochem. Photobiol. Sci., 6, pp. 873-882
  • Damm, A., Elbers, J., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP) (2010) Glob. Change Biol., 16, pp. 171-186
  • Daughtry, C.S.T., Biehl, L.L., Ranson, K.J., A new technique to measure the spectral properties of conifer needles (1989) Remote Sens. Environ., 27, pp. 81-91
  • Demmig, B., Winter, K., Krüger, A., Czygan, F.C., Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy (1987) Plant Physiol., 84, pp. 218-224
  • Demmig-Adams, B., Adams, W.W., The role of xanthophyll cycle carotenoids in the protection of photosynthesis (1996) Trends Plant Sci., 1, pp. 21-26
  • Di Bella, C.M., Paruelo, J.M., Becerra, J.E., Bacour, C., Baret, F., Experimental and simulated evidences of the effect of senescent biomass on the estimation of fPAR from NDVI measurements on grass canopies (2004) Int. J. Remote Sens., 25, pp. 5415-5427
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2010) InfoStat Versión Grupo InfoStat, FCA, , http://www.infostat.com.ar/, Universidad Nacional de Córdoba, Córdoba, Argentina
  • Field, C.B., Ecological scaling of carbon gain to stress and resource availability (1991) Integrated Responses of Plants to Stress, pp. 1-32. , Academic Press, New York, H.A. Mooney, W.E. Winner, E.J. Pell (Eds.)
  • Filella, I., Porcar-Castell, A., Munné-Bosch, S., Bäck, J., Garbulsky, M.F., Peñuelas, J., PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle (2009) Int. J. Remote Sens., 30, pp. 4443-4455
  • Gamon, J., Bond, B., Effects of irradiance and photosynthetic downregulation on the photochemical reflectance index in Douglas-fir and ponderosa pine (2013) Remote Sens. Environ., 135, pp. 141-149
  • Gamon, J., Peñuelas, J., Field, C., A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency (1992) Remote Sens. Environ., 41, pp. 35-44
  • Gamon, J., Serrano, L., Surfus, J., The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels (1997) Oecologia, 112, pp. 492-501
  • Gamon, J., Field, C., Fredeen, A., Thayer, S., Assessing photosynthetic downregulation in sunflower stands with an optically-based model (2001) Photosynth. Res., 67, pp. 113-125
  • Gamon, J., Kovalchuk, O., Wong, C., Harris, A., Garrity, S., Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors (2015) Biogeosci. Discuss, 12, pp. 2947-2978
  • Garbulsky, M., Peñuelas, J., Gamon, J., Inoue, Y., Filella, I., The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficienciea. A review and meta-analysis (2011) Remote Sens. Environ., 115, pp. 281-297
  • Gilmanov, T.G., Tieszen, L.L., Wylie, B.K., Flanagan, L.B., Frank, A.B., Haferkamp, M.R., Integration of CO2 flux and remotely sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: potential for quantitative spatial extrapolation (2005) Glob. Ecol. Biogeogr., 14, pp. 271-292
  • Gitelson, A., Gamon, J., The need for a common basis for defining light-use efficiency: implications for productivity estimation (2015) Remote Sens. Environ., 156, pp. 196-201
  • Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., Bowyer, P., Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence (2007) Glob. Change Biol., 13, pp. 1484-1497
  • Grigera, G., Oesterheld, M., Pacin, F., Monitoring forage production for farmer's decision making (2007) Agric. Syst., 94, pp. 637-648
  • Guo, J., Trotter, C., Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species (2004) Funct. Plant Biol., 31, pp. 255-265
  • Haboudane, D., Miller, J., Pattey, E., Zarco-Tejada, P., Strachan, I., Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture (2004) Remote Sens. Environ., 90, pp. 337-352
  • Hall, A.J., Connor, D.J., Sadras, V.O., Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny (1995) Field Crop Res., 41, pp. 65-77
  • Hilker, T., Coops, N.C., Wulder, M.A., Black, T.A., Guy, R.D., The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements (2008) Sci. Total Environ., 404, pp. 411-423
  • Hmimina, G., Dufrêne, E., Soudani, K., Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: towards a rapid and efficient correction method using real-time measurements (2013) Plant Cell Environ., 37, pp. 473-487
  • Hoagland, D.R., Arnon, D.I., The water culture method for growing plants without soil (1950) Calif. Agric. Exp. Stn. Circ., 347, pp. 1-32
  • Iriel, A., Novo, J., Cordon, G., Lagorio, M.G., Atrazine and methyl viologen effects on chlorophyll-a fluorescence, revisited-implications in photosystems emission and ecotoxicity assessment (2014) Photochem. Photobiol., 90, pp. 107-112
  • Iriel, A., Dundas, G., Fernández Cirelli, A., Lagorio, M.G., Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants (2015) Chemosphere, 119, pp. 697-703
  • Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., PROSPECT + SAIL: a review of use for vegetation characterization (2009) Remote Sens. Environ., 113, pp. S56-S66
  • Julitta, T., Corp, L., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers (2016) Remote Sens., 8, p. 122
  • Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, pp. 115-150. , Nova publisher, Hauppauge, NY, H. Le, E. Salcedo (Eds.)
  • Lichtenthaler, H.K., Buschmann, C., Chlorophylls and carotenoids: measurement and characterization by UV-vis spectroscopy (2001) Current Protocols in Food Analytical Chemistry, , F4.3.1-F4.3.8, Wiley and Sons, New York, R.E. Wrolstad, T.E. Acree, H. An, E.A. Decker, M.H. Penner, D.S. Reid (Eds.)
  • Liu, L., Cheng, Z., Detection of vegetation light-use efficiency based on solar-induced chlorophyll fluorescence separated from canopy radiance spectrum (2010) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 3, pp. 306-312
  • Liu, L., Zhao, J., Guan, L., Tracking photosynthetic injury of paraquat-treated crop using chlorophyll fluorescence from hyperspectral data (2013) Eur. J. Remote Sens., 46, pp. 459-473
  • Louis, J., Ounis, A., Ducruet, J.M., Evain, S., Laurila, T., Thum, T., Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of scots pine in the boreal forest during spring recovery (2005) Remote Sens. Environ., 96, pp. 37-48
  • Malenovský, Z., Mishra, K., Zemek, F., Rascher, U., Nedbal, L., Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence (2009) J. Exp. Bot., 60, pp. 2987-3004
  • Martínez, A.C., Paruelo, J.M., Alcaraz-Segura, D., Cabello, J., Oyarzabal, M., López-Carrique, E., Missing gaps in the estimation of the carbon gains service from light use efficiency models (2013) Earth Observations of Ecosystems Services, pp. 105-124. , CRC Press-Taylor and Francis Group, New York, D. Alcaraz-Segura, C. Di Bell, J. Straschnoy (Eds.)
  • Maxwell, K., Johnson, G., Chlorophyll fluorescence-A practical guide (2000) J. Exp. Bot., 51, pp. 659-668
  • McNaughton, S.J., Oesterheld, M., Frank, D.A., Williams, K.J., Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats (1989) Nature, 341, pp. 142-144
  • Meroni, M., Rossini, M., Picchi, V., Panigada, C., Cogliati, C., Colombo, R., Assesing steady-state fluorescence and PRI from hyperspectral proximal sensing as early indicators of plants stress: the case of ozone exposure (2008) Sensor, 8, pp. 1740-1754
  • Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications (2009) Remote Sens. Environ., 113, pp. 2037-2051
  • Monteith, J.L., Solar radiation and productivity in tropical ecosystems (1972) J. Appl. Ecol., 9, pp. 747-766
  • Monteith, J.L., Climate and the efficiency of crop production in Britain (and discussion) (1977) Philos. Trans. R Soc. Lond. B Biol. Sci., 281, pp. 277-294
  • Moya, I., Camenen, L., Evain, S., Goulas, Y., Cerovic, Z., Latouche, G., A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence (2004) Remote Sens. Environ., 91, pp. 186-197
  • Nichol, C., Rascher, U., Matsubara, S., Osmond, C., Assessing photosynthetic efficiency in an experimental mangrove canopy using optical remote sensing and chlorophyll fluorescence (2006) Trees, 20, pp. 9-15
  • Oyarzabal, M., Oesterheld, M., Grigera, G., ¿Cómo estimar la eficiencia en el uso de la radiación mediante sensores remotos y cosechas de biomasa? (2010) Bases Ecológicas Y Tecnológicas Para El Manejo De Pastizales, pp. 119-131. , Unidad de Comunicación y Transferencia de Tecnología del INIA, Montevideo, A. Altesor, W. Ayala, J.M. Paruelo (Eds.)
  • Peñuelas, J., Filella, I., Gamon, J., Assessment of photosynthetic radiation use efficiency with spectral reflectance (1995) New Phytol., 131, pp. 291-296
  • Pedrós, R., Goulas, Y., Jacquemound, S., Louis, J., FluorM.O.Dleaf, M.I., A new leaf fluorescence emission model based on the PROSPECT model (2010) Remote Sens. Environ., 114, pp. 155-167
  • Piñeiro, G., Oesterheld, M., Paruelo, J.M., Seasonal variation in aboveground production and radiation use efficiency of temperate rangelands estimated through remote sensing (2006) Ecosystems, 9, pp. 357-373
  • Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfündel, E.E., Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges (2014) J. Exp. Bot., 65, pp. 4065-4095
  • Rahimzadeh-Bajgiran, P., Munehiro, M., Omasa, K., Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages (2012) Photosynth. Res., 113, pp. 261-271
  • Rosenqvist, E., van Kooten, O., Chlorophyll fluorescence: a general description and nomenclature (2003) Practical Applications of Chlorophyll Fluorescence in Plant Biology, pp. 31-78. , Kluwer Academic Publishers, Boston, J.R. De Ell, P.M.A. Toivonen (Eds.)
  • Running, S.W., Thornton, P.E., Nemani, R.R., Glassy, J.M., Global terrestrial gross and net primary productivity from the earth observing system (2000) Methods in Ecosystem Science, pp. 44-57. , Springer-Verlag, New York, O. Sala, R. Jackson, H. Mooney (Eds.)
  • Schurr, U., Walter, A., Rascher, U., Functional dynamics of plant growth and photosynthesis -from steady-state to dynamics -from homogeneity to heterogeneity (2006) Plant Cell Environ., 29, pp. 340-352
  • Sellers, P.J., Berry, J.A., Collatz, G.J., Field, C.B., Hall, F.G., Canopy reflectance, photosynthesis, and transpiration: III. A reanalysis using improved leaf models and a new canopy integration scheme (1992) Remote Sens. Environ., 42, pp. 187-216
  • Sims, D., Gamon, J., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages (2002) Remote Sens. Environ., 81, pp. 337-354
  • Soudani, K., Hmimina, G., Dufrêne, E., Berveiller, D., Delpierre, N., Ourcival, J.-M., Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests (2014) Remote Sens. Environ., 144, pp. 73-84
  • Strachan, I.B., Pattey, E., Boisvert, J.B., Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance (2002) Remote Sens. Environ., 80, pp. 213-224
  • Stylinski, C., Gamon, J., Oechel, W., Seasonal patterns of reflectance indices, carotenoid pigments and photsynthesis of evergreen chaparral species (2002) Oecologia, 131, pp. 366-374
  • Tambussi, E., Casadesus, J., Munné-Bosch, S., Araus, J.L., Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments (2002) Funct. Plant Biol., 29, pp. 35-44
  • Trotter, C., Whitehead, D., Pinkney, E., The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen constraints (2002) Int. J. Remote Sens., 23, pp. 1207-1212
  • Weng, J.H., Liao, T.S., Hwang, M.Y., ChCh, C., Lin, C.P., Chu, C., Seasonal variation in photosystem II efficiency and photochemical reflectance index of evergreen trees and perennial grasses growing at low and high elevations in subtropical Taiwan (2006) Tree Physiol., 26, pp. 1097-10104
  • Weng, J.H., Jhaung, L.H., Lin, R.J., Chen, H.Y., Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: merging data from different illuminations, seasons and leaf colors (2010) Tree Physiol., 30, pp. 469-478
  • (2015), http://brucelindbloom.com/, (accessed November)

Citas:

---------- APA ----------
Cordon, G., Lagorio, M.G. & Paruelo, J.M. (2016) . Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. Journal of Plant Physiology, 199, 100-110.
http://dx.doi.org/10.1016/j.jplph.2016.05.010
---------- CHICAGO ----------
Cordon, G., Lagorio, M.G., Paruelo, J.M. "Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence" . Journal of Plant Physiology 199 (2016) : 100-110.
http://dx.doi.org/10.1016/j.jplph.2016.05.010
---------- MLA ----------
Cordon, G., Lagorio, M.G., Paruelo, J.M. "Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence" . Journal of Plant Physiology, vol. 199, 2016, pp. 100-110.
http://dx.doi.org/10.1016/j.jplph.2016.05.010
---------- VANCOUVER ----------
Cordon, G., Lagorio, M.G., Paruelo, J.M. Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. J. Plant Physiol. 2016;199:100-110.
http://dx.doi.org/10.1016/j.jplph.2016.05.010