Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Sorghum bicolor (L.) Moench is an ancient drought-tolerant crop with potential to sustain high yields even in those environments where water is limiting. Understanding the performance of this species in early phenological stages could be a useful tool for future yield improvement programs. The aim of this work was to study the response of Sorghum seedlings under water deficit conditions in two genotypes (RedLandB2 and IS9530) that are currently employed in Argentina. Morphological and physiological traits were studied to present an integrated analysis of the shoot and root responses. Although both genotypes initially developed a conserved and indistinguishable response in terms of drought tolerance parameters (growth rate, biomass reallocation, etc.), water regulation displayed different underlying strategies. To avoid water loss, both genotypes adjusted their plant hydraulic resistance at different levels: RedLandB2 regulated shoot resistance through stomata (isohydric strategy), while IS9530 controlled root resistance (anisohydric strategy). Moreover, only in IS9530 was root hydraulic conductance restricted in the presence of HgCl2, in agreement with water movement through cell-to-cell pathways and aquaporins activity. The different responses between genotypes suggest a distinct strategy at the seedling stage and add new information that should be considered when evaluating Sorghum phenotypic plasticity in changing environments. © 2016 Elsevier GmbH.

Registro:

Documento: Artículo
Título:Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes
Autor:Sutka, M.R.; Manzur, M.E.; Vitali, V.A.; Micheletto, S.; Amodeo, G.
Filiación:Dept. de Biodiversidad y Biologia Exper. e Inst. de Biodiversidad y Biologia Experimental y Aplicada, IBBEA, CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Ciudad Univ., Pabellon II, Buenos Aires, C1428EGA, Argentina
CERZOS-CONICET, Camino La Carrindanga, Bahía Blanca, 8000, Argentina
Palabras clave:Hydraulic conductance; Seedling physiology; Sorghum bicolor; Water deficit; water; biomass; dehydration; drought; evapotranspiration; genetics; genotype; phenotype; physiology; plant root; seedling; shoot; sorghum; Biomass; Dehydration; Droughts; Genotype; Phenotype; Plant Roots; Plant Shoots; Plant Transpiration; Seedlings; Sorghum; Water
Año:2016
Volumen:192
Página de inicio:13
Página de fin:20
DOI: http://dx.doi.org/10.1016/j.jplph.2016.01.002
Título revista:Journal of Plant Physiology
Título revista abreviado:J. Plant Physiol.
ISSN:01761617
CODEN:JPPHE
CAS:water, 7732-18-5; Water
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01761617_v192_n_p13_Sutka

Referencias:

  • Ayadi, M., Cavez, D., Miled, N., Chaumont, F., Masmoudi, K., Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance (2011) Plant Physiol. Biochem., 49, pp. 1029-1039
  • Brady, N.C., (1990) The Nature and Properties of Soils, , MacMillan Pub. Co., New York
  • Brouwer, R., Some aspects of the equilibrium between overground and underground plant parts (1963) Jaarboek van het Institut voor Biologisch en Scheikundig onderzoek aan Landbouwgewassen, pp. 31-39
  • Carpita, N.C., McCann, M.C., Maize and Sorghum: genetic resources for bioenergy grasses (2008) Trends Plant Sci., 13, pp. 415-420
  • Carvajal, M., Cooke, D.T., Clarkson, D.T., Responses of wheat plants to nutrient deprivation may involve the regulation of water-channels function (1996) Planta, 199, pp. 372-381
  • Choudhary, S., Sinclair, T.R., Vara Prasad, P.B., Hydraulic conductance of intact plants of two contrasting Sorghum lines, SC15 and SC1205 (2013) Funct. Plant Biol., 40, pp. 730-738
  • Clark, A., (2007) Managing cover crops profitably. Sustainable Agriculture Research and Education (SARE) Handbook Series Book 9, , Sustainable Agriculture Research and Education (SARE) Program, College Park, MD
  • Cruz, R.T., Jordan, W.R., Drew, M.C., Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit (1992) Plant Physiol., 99, pp. 203-212
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2013) InfoStat versión. Grupo InfoStat, FCA, , http://www.infostat.com.ar, Universidad Nacional de Córdoba, Argentina
  • Djanaguiraman, M., Vara Prasad, P.V., Murugan, M., Perumal, R., Reddy, U.K., Physiological differences among Sorghum (Sorghum bicolor L: Moench) genotypes under high temperature stress (2014) Environ. Exp. Bot., 100, pp. 43-54
  • http://www.fao.org/economic/esa/esag/; Foster, A.S., Techniques for the study of venation patterns on the leaves of angiosperms (1950) Proceedings of the 7th International Congress of Botany, pp. 586-587
  • Fracasso, A., Trindade, L., Amaducci, S., Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment (2016) J. Plant Physiol., 190, pp. 1-14
  • Gholipoor, M., Prasad, P.V.V., Mutava, R.N., Sinclair, T.R., Genetic variability of transpiration response to vapor pressure deficit among Sorghum genotypes (2010) Field Crops Res., 119, pp. 85-90
  • Gholipoor, M., Sinclair, T.R., Prasad, P.V.V., Genotypic variation within Sorghum for transpiration response to drying soil (2012) Plant Soil, 357, pp. 35-40
  • Gregory, P.J., (2006) Plant Roots: Growth, Activity and Interactions with the Soil, , Oxford Blackwell, London
  • Gregory, P.J., Palta, J.A., Batts, G.R., Root system and root:mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops (1997) Plant Soil, 187, pp. 221-228
  • Hommel, R., Siegwolf, R., Saurer, M., Farquhar, G.D., Kayler, Z., Ferrio, J.P., Gessler, A., Drought response of mesophyll conductance in forest understory species-impacts on water-use efficiency and interactions with leaf water movement (2014) Physiol Plant, 152, pp. 98-114
  • Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J., Vinh, J., Heyes, J., Maurel, C., Role of a single aquaporin isoform in root water uptake (2003) Plant Cell, 15, pp. 509-522
  • Katsuhara, M., Koshio, K., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants (2003) Plant Cell Physiol, 44, pp. 1378-1383
  • Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H.J., Gene expression profiles during the initial phase of salt stress in rice (2001) Plant Cell, 13, pp. 889-905
  • Klein, T., The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours (2014) Funct. Ecol., 28, pp. 1313-1320
  • Lambers, H., Chapin, F.S., Pons, T.L., (2008) Plant Physiological Ecology, , Springer, New York, USA
  • Li, G., Santoni, V., Maurel, C., Plant aquaporins: Roles in plant physiology (2014) Biochim. Biophys. Acta, 1840, pp. 1574-1582
  • Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K., Zhang, S., Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L (2014) J. Exp. Bot., 65, pp. 4747-4756
  • Lynch, J.P., Chimungu, J.G., Brown, K.M., Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement (2014) J. Exp. Bot., 65, pp. 6155-6166
  • Mahdieh, M., Mostajeran, A., Horie, T., Katsuhara, M., Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants (2008) Plant Cell Physiol., 49, pp. 801-813
  • Malik, R.S., Dhankar, J.S., Turner, N.C., Influence of soil water deficits on roots growth cotton seedlings (1979) Plant Soil, 53, pp. 109-115
  • Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J., Mencuccini, M., A new look at water transport regulation in plants (2014) New Phytol., 204, pp. 105-115
  • Matsuo, N., Ozawa, K., Mochizuki, T., Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes (2009) Plant Soil, 316, pp. 25-34
  • Meyer, R.F., Boyer, J.S., Osmoregulation, solute distribution, and growth in soybean seedlings having low water potentials (1981) Planta, 151, pp. 482-489
  • Miyamoto, N., SteudleE.Hirasawa, T., Lafitte, R., Hydraulic conductivity of rice roots (2001) J. Exp. Bot., 52, pp. 1835-1846
  • Morris, G.P., Ramub, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Kresovich, S., Population genomic and genome-wide association studies of agroclimatic traits in Sorghum (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 453-458
  • Moshelion, M., Halperin, O., Wallach, R., Oren, R., Way, D.A., Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield (2015) Plant Cell Environ., 38, pp. 1785-1793
  • Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., Gibon, Y., Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs (2011) J. Exp. Bot., 62, pp. 1715-1729
  • Ogbaga, C.C., Stepien, P., Johnson, G.N., Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought (2014) Physiol. Plant, 152, pp. 389-401
  • Pasini, L., Bergonti, M., Fracasso, A., Marocco, A., Amaducci, S., Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of Sorghum under dry-down conditions (2014) J. Plant Physiol., 171, pp. 537-548
  • Passioura, J.B., Root signals control leaf expansion in wheat seedlings growing in drying soil (1988) Aust. J. Plant Physiol., 15, pp. 687-693
  • Passioura, J.B., Water in the Soil-Plant-Atmosphere Continuum. Physiological Plant Ecology II, (1982) Encyclopedia of Plant Physiology, 12 (B), pp. 5-33
  • Pittermann, J., The evolution of water transport in plants: an integrated approach (2010) Geo, 8, pp. 112-139
  • Ranathunge, K., Schreiber, L., Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin (2011) J. Exp. Bot., 62, pp. 1961-1974
  • Reddy, P.S., Rao, T.S.R.B., Sharma, K.K., Vadez, V., Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.) (2015) Plant Gene., 1, pp. 18-28
  • Richards, R.A., Physiological traits used in the breeding of new cultivars for water-scarce environments (2006) Agric. Water Manage, 8080, pp. 197-211
  • Rodríguez, M.V., Mendiondo, G.M., Maskin, L., Gudesblat, G.E., Iusem, N.D., Benech-Arnold, R.L., Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages (2009) Ann. Bot., 104, pp. 975-985
  • Rogers, E.D., Benfey, P.N., Regulation of plant root system architecture: implications for crop advancement (2015) Curr. Opin. Biotechnol., 32, pp. 93-98
  • Saballos, A., Ejeta, G., Sanchez, E., Kang, C.H., Vermerris, W., A genomewide analysis of the cinnamyl alcohol dehydrogenase family in Sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2as the brown midrib Gene (2009) Genetics, 181, pp. 783-795
  • Schölander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A., Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants (1965) Science, 148, pp. 339-346
  • Schreiber, L., Franke, R., Hartmann, K., Ranathunge, K., Steudle, E., The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) (2005) J. Exp. Bot., 56, pp. 1427-1436
  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Shinozaki, K., Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray (2002) Plant J., 31, pp. 279-292
  • Shanker, A.K., Maheswari, M., Yadav, S.K., Desai, S., Bhanu, D., Attal, N.B., Venkateswarlu, B., Drought stress responses in crops (2014) Funct. Integr. Genomics, 14, pp. 11-22
  • Sharp, R.E., Davies, W.J., Solute regulation and growth by roots and shoots of water-stressed maize plants (1979) Planta, 147, pp. 43-49
  • Sharp, R.E., Silk, W.K., Hsiao, T.C., Growth of the maize primary root at low water potential: I. Spatial distribution of expansive growth (1988) Plant Physiol., 87, pp. 50-57
  • Sinclair, T.R., Holbrook, N.M., Zwieniecki, M.A., Daily transpiration rates of woody species on drying soil (2005) Tree Physiol., 25, pp. 1469-1472
  • Siqueira, M., Katul, G., Porporato, A., Onset of water stress, hysteresis in plant conductance, and hydraulic lift: scaling soil water dynamics from millimeters to meters (2008) Water Resour. Res., 44, p. 14
  • Steinbach, H.S., Benech-Arnold, R.L., Sánchez, R.A., Hormonal regulation of dormancy in developing Sorghum seeds (1997) Plant Physiol., 11, pp. 149-154
  • Steudle, E., Murrmann, M., Peterson, C.A., Transport of water and solutes across maize roots modified by puncturing the endodermis: further evidence for the composite transport model of the root (1993) Plant Physiol., 103, pp. 335-349
  • Steudle, E., Water uptake by roots: effects of water deficit (2000) J. Exp. Bot., 51, pp. 1531-1542
  • Sutka, M., Li, G., Boudet, J., Boursiac, Y., Doumas, P., Maurel, C., Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions (2011) Plant Physiol., 155, pp. 1264-1276
  • Tardieu, F., Parent, B., Caldeira, C.F., Welcker, C., Genetic and physiological controls of growth under water deficit (2014) Plant Physiol., 164, pp. 1628-1635
  • Tardieu, F., Tuberosa, R., Dissection and modelling of abiotic stress tolerance in plants (2010) Curr. Opin. Plant Biol., 13, pp. 206-212
  • Turner, N.C., Techniques and experimental approach for the measurements of plant water status (1981) Plant Soil, 58, pp. 339-366
  • Tyree, M.T., Hydraulic properties of roots (2003) Ecological Studies, 168, pp. 125-150. , Springer-Verlag, Berlin Heidelberg
  • Undersander, D.J., Smith, L.H., Kaminski, A.R., Kelling, K.A., Doll, J.D., Sorghum forage (2016) Alternative Field Crop Manual, , University of Wisconsin -Exension, Cooperative Extension, 2003
  • van der Weele, C.M., Spollen, W.G., Sharp, R.E., Baskin, T.I., Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media (2000) J. Exp. Bot., 51, pp. 1555-1562
  • Wu, Y., Cosgrove, D.J., Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins (2000) J. Exp. Bot., 51, pp. 1543-1553
  • Zhang, W.H., Tyerman, S.D., Inhibition of water channels by HgCl2 in intact wheat root cells (1999) Plant Physiol., 120, pp. 849-858
  • Zhu, C., Schraut, D., Hartung, W., Schäffner, A.R., Differential responses of maize MIP genes to salt stress and ABA (2005) J. Exp. Bot., 56, pp. 2971-2981

Citas:

---------- APA ----------
Sutka, M.R., Manzur, M.E., Vitali, V.A., Micheletto, S. & Amodeo, G. (2016) . Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. Journal of Plant Physiology, 192, 13-20.
http://dx.doi.org/10.1016/j.jplph.2016.01.002
---------- CHICAGO ----------
Sutka, M.R., Manzur, M.E., Vitali, V.A., Micheletto, S., Amodeo, G. "Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes" . Journal of Plant Physiology 192 (2016) : 13-20.
http://dx.doi.org/10.1016/j.jplph.2016.01.002
---------- MLA ----------
Sutka, M.R., Manzur, M.E., Vitali, V.A., Micheletto, S., Amodeo, G. "Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes" . Journal of Plant Physiology, vol. 192, 2016, pp. 13-20.
http://dx.doi.org/10.1016/j.jplph.2016.01.002
---------- VANCOUVER ----------
Sutka, M.R., Manzur, M.E., Vitali, V.A., Micheletto, S., Amodeo, G. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. J. Plant Physiol. 2016;192:13-20.
http://dx.doi.org/10.1016/j.jplph.2016.01.002