Artículo

Campestre, M.P.; Bordenave, C.D.; Origone, A.C.; Menéndez, A.B.; Ruiz, O.A.; Rodríguez, A.A.; Maiale, S.J. "Polyamine catabolism is involved in response to salt stress in soybean hypocotyls" (2011) Journal of Plant Physiology. 168(11):1234-1240
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The possible relationship between polyamine catabolism mediated by copper-containing amine oxidase and the elongation of soybean hypocotyls from plants exposed to NaCl has been studied. Salt treatment reduced values of all hypocotyl growth parameters. In vitro, copper-containing amine oxidase activity was up to 77-fold higher than that of polyamine oxidase. This enzyme preferred cadaverine over putrescine and it was active even under the saline condition. On the other hand, saline stress increased spermine and cadaverine levels, and the in vivo copper-containing amine oxidase activity in the elongation zone of hypocotyls. The last effect was negatively modulated by the addition of the copper-containing amine oxidase inhibitor N,N'-diaminoguanidine. In turn, plants treated with the inhibitor showed a significant reduction of reactive oxygen species in the elongation zone, even in the saline situation. In addition, plants grown in cadaverine-amended culture medium showed increased hypocotyl length either in saline or control conditions and this effect was also abolished by N,N'-diaminoguanidine. Taken together, our results suggest that the activity of the copper-containing amine oxidase may be partially contributing to hypocotyl growth under saline stress, through the production of hydrogen peroxide by polyamine catabolism and reinforce the importance of polyamine catabolism and hydrogen peroxide production in the induction of salt tolerance in plants. © 2011 Elsevier GmbH.

Registro:

Documento: Artículo
Título:Polyamine catabolism is involved in response to salt stress in soybean hypocotyls
Autor:Campestre, M.P.; Bordenave, C.D.; Origone, A.C.; Menéndez, A.B.; Ruiz, O.A.; Rodríguez, A.A.; Maiale, S.J.
Filiación:Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomus/Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de General San Martin (IIB-INTECH/CONICET-UNSAM), Camino de Circunvalacion Laguna, Km 6 CC 164 (B7130IWA), Chascomús, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
Palabras clave:Copper-containing amine oxidase; Growth; Hydrogen peroxide; Saline stress; Soybean; Glycine max
Año:2011
Volumen:168
Número:11
Página de inicio:1234
Página de fin:1240
DOI: http://dx.doi.org/10.1016/j.jplph.2011.01.007
Título revista:Journal of Plant Physiology
Título revista abreviado:J. Plant Physiol.
ISSN:01761617
CODEN:JPPHE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01761617_v168_n11_p1234_Campestre

Referencias:

  • Aghaei, K., Ehsanpour, A.A., Shah, A.H., Komatsu, S., Proteome analysis of soybean hypocotyl and root under salt stress (2009) Amino Acids, 36, pp. 91-98
  • Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., Involvement of polyamines in plant response to abiotic stress (2006) Biotechnol Lett, 28, pp. 1867-1876
  • Allan, A.C., Fluhr, R., Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells (1997) Plant Cell, 9, pp. 1559-1572
  • Bensen, R.J., Boyer, J.S., Mullet, J.E., Water deficit-induced changes in abscisic acid, growth, polysomes, and translatable RNA in soybean hypocotyls (1988) Plant Physiol, 88, pp. 289-294
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., Functions of amine oxidases in plant development and defence (2006) Trends Plant Sci, 11, pp. 80-88
  • Cona, A., Rea, G., Botta, M., Corelli, F., Federico, R., Angelini, R., Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L (2006) J Exp Bot, 57, pp. 2277-2289
  • Cosgrove, D.J., Enzymes and other agents that enhance cell wall extensibility (1999) Annu Rev Plant Biol, 50, pp. 391-417
  • Cosgrove, D.J., Durachko, D.M., Autolysis and extension of isolated walls from growing cucumber hypocotyls (1994) J Exp Bot, 45, pp. 1711-1719
  • Das, S., Bose, A., Ghosh, B., Effect of salt stress on polyamine metabolism in Brassica campestris (1995) Phytochemistry, 39, pp. 283-285
  • Delis, C., Dimou, M., Flemetakis, E., Aivalakis, G., Katinakis, P., A root- and hypocotyls-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings (2006) J Exp Bot, 57, pp. 101-111
  • Demidchik, V., Maathuis, F.J.M., Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development (2007) New Phytol, 175, pp. 387-404
  • Demidchik, V., Shabala, S.N., Coutts, K.B., Tester, M.A., Davies, J.M., Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells (2003) J Cell Sci, 116, pp. 81-88
  • Di Rienzo, J.A., Guzmán, A.W., Casanoves, F., A multiple-comparisons method based on the distribution of the root node distance of a binary tree (2002) J Agri Biol Env Stat, 7, pp. 129-142
  • Federico, R., Angelini, R., Polyamine catabolism in plants (1991) Biochemistry and Physiology of Polyamines in Plants, pp. 41-53. , CRC Press, Boca Raton, R.D. Slocum, H.E. Flores (Eds.)
  • Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Costa, S., Dolan, L., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth (2003) Nature, 422, pp. 442-446
  • Gamarnik, A., Frydman, R.B., Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds (1991) Plant Physiol, 97, pp. 778-785
  • Jiménez-Bremont, J.F., Ruiz, O.A., Rodríguez-Kessler, M., Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress (2007) Plant Physiol Biochem, 45, pp. 812-821
  • Kaur-Sawhney, R., Tiburcio, A.F., Altabella, T., Galston, A.W., Polyamines in plants: an overview (2003) J Cell Mol Biol, 2, pp. 1-12
  • Lim, T.S., Chitra, T.R., Han, P., Pua, E.C., Yu, H., Cloning and characterization of Arabidopsis and Brassica juncea fl{ligature}avin-containing amine oxidases (2006) J Exp Bot, 57, pp. 4155-4169
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method (2001) Methods, 25, pp. 402-408
  • Maiale, S., Sanchez, D.H., Guirado, A., Vidal, A., Ruiz, O., Spermine accumulation under salt stress (2004) J Plant Physiol, 161, pp. 35-42
  • Maiale, S., Marina, M., Sánchez, D.H., Pieckenstain, F.L., Ruiz, O.A., In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues (2008) Phytochemistry, 69, pp. 2552-2558
  • Marina, M., Maiale, S.J., Rossi, F.R., Romero, M.F., Rivas, E.I., Gárriz, A., Pieckenstain, F.L., Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava (2008) Plant Physiol, 147, pp. 2164-2178
  • Moschou, P.N., Paschalidis, K.A., Delis, I.D., Andriopoulou, A.H., Lagiotis, G.D., Yakoumakis, D.I., Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco (2008) Plant Cell, 20, pp. 1708-1724
  • Munns, R., Termatt, A., Whole plant response to salinity (1986) Plant Growth, Drought, and Salinity, pp. 143-160. , CSIRO Publishing, Canberra, N.C. Turner, I. Passioura (Eds.)
  • Rodríguez, A.A., Grunberg, K.A., Taleisnik, E.L., Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension (2002) Plant Physiol, 129, pp. 1627-1632
  • Rodríguez, A.A., Córdoba, A.R., Ortega, L., Taleisnik, E., Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity (2004) J Exp Bot, 55, pp. 1383-1390
  • Rodríguez, A.A., Maiale, S.J., Menéndez, A.B., Ruiz, O.A., Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress (2009) J Exp Bot, 60, pp. 4249-4262
  • Rodríguez-Kessler, M., Ruiz, O.A., Maiale, S., Ruiz-Herrera, J., Jiménez-Bremont, J.F., Polyamine metabolism in maize tumors induced by Ustilago maydis (2008) Plant Physiol Biochem, 46, pp. 805-814
  • Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiol Biochem, 45, pp. 39-46
  • Schopfer, P., Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth (2001) Plant J, 28, pp. 679-688
  • Schopfer, P., Plachy, C., Frahry, G., Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid (2001) Plant Physiol, 125, pp. 1591-1602
  • Scoccianti, V., Torrigiani, P., Bagni, N., Distribution of diamine oxidase activity and polyamine pattern in bean and soybean seedlings at different stages of germination (1990) Physiol Plant, 80, pp. 515-519
  • Šebela, M., Radová, A., Angelini, R., Tavladoraki, P., Frébort, I., Pec, P., FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants (2001) Plant Sci, 160, pp. 197-207
  • Smith, T.A., Wilshire, G., Distribution of cadaverine and other amines in higher plants (1975) Phytochemistry, 14, pp. 2341-2346
  • Steiner, N., Santa-Catarina, C., Silveira, V., Floh, E.I.S., Guerra, M.P., Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures (2007) Plant Cell Tiss Organ Cult, 89, pp. 55-62
  • Taleisnik, E., Rodríguez, A.A., Bustos, D.A., Erdei, L., Ortega, L., Senn, M.E., Leaf expansion in grasses under salt stress (2009) J Plant Physiol, 166, pp. 1123-1140
  • Tiburcio, A.F., Altabella, T., Borrell, A., Masgrau, C., Polyamine metabolism and its regulation (1997) Physiol Plant, 100, pp. 664-674
  • Walters, D.R., Polyamines and plant disease (2003) Phytochemistry, 64, pp. 97-107
  • Xing, S.G., Jun, Y.B., Hau, Z.W., Liang, L.Y., Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots (2007) Plant Physiol Biochem, 45, pp. 560-566
  • Zapata, P.J., Serrano, M., Pretel, M.T., Amorós, A., Botella, M.A., Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination (2003) Plant Sci, 164, pp. 557-563

Citas:

---------- APA ----------
Campestre, M.P., Bordenave, C.D., Origone, A.C., Menéndez, A.B., Ruiz, O.A., Rodríguez, A.A. & Maiale, S.J. (2011) . Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. Journal of Plant Physiology, 168(11), 1234-1240.
http://dx.doi.org/10.1016/j.jplph.2011.01.007
---------- CHICAGO ----------
Campestre, M.P., Bordenave, C.D., Origone, A.C., Menéndez, A.B., Ruiz, O.A., Rodríguez, A.A., et al. "Polyamine catabolism is involved in response to salt stress in soybean hypocotyls" . Journal of Plant Physiology 168, no. 11 (2011) : 1234-1240.
http://dx.doi.org/10.1016/j.jplph.2011.01.007
---------- MLA ----------
Campestre, M.P., Bordenave, C.D., Origone, A.C., Menéndez, A.B., Ruiz, O.A., Rodríguez, A.A., et al. "Polyamine catabolism is involved in response to salt stress in soybean hypocotyls" . Journal of Plant Physiology, vol. 168, no. 11, 2011, pp. 1234-1240.
http://dx.doi.org/10.1016/j.jplph.2011.01.007
---------- VANCOUVER ----------
Campestre, M.P., Bordenave, C.D., Origone, A.C., Menéndez, A.B., Ruiz, O.A., Rodríguez, A.A., et al. Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J. Plant Physiol. 2011;168(11):1234-1240.
http://dx.doi.org/10.1016/j.jplph.2011.01.007