Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Natural and modified nucleoside-5′-monophosphates and their precursors are valuable compounds widely used in biochemical studies. Bacterial nonspecific acid phosphatases (NSAPs) are a group of enzymes involved in the hydrolysis of phosphoester bonds, and some of them exhibit phosphotransferase activity. NSAP containing Enterobacter aerogenes and Raoultella planticola whole cells were evaluated in the phosphorylation of a wide range of nucleosides and nucleoside precursors using pyrophosphate as phosphate donor. To increase the productivity of the process, we developed two genetically modified strains of Escherichia coli which overexpressed NSAPs of E. aerogenes and R. planticola. These new recombinant microorganisms (E. Coli BL21 pET22b-phoEa and E. Coli BL21 pET22b-phoRp) showed higher activity than the corresponding wild-type strains. Reductions in the reaction times from 21 h to 60 min, from 4 h to 15 min, and from 24 h to 40 min in cases of dihydroxyacetone, inosine, and fludarabine, respectively, were obtained. © 2013 Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds
Autor:Médici, R.; Garaycoechea, J.I.; Valino, A.L.; Pereira, C.A.; Lewkowicz, E.S.; Iribarren, A.M.
Filiación:Laboratorio de Biocatálisis y Biotransformaciones, Universidad Nacional de Quilmes, R.S. Peña 352. Bernal (1876), Buenos Aires, Argentina
Biocatalysis and Organic Chemistry Group, Delft University of Technology, Julianalaan 67, 2628 BC Delft, Netherlands
Instituto de Investigaciones Médicas Alfredo Lanari (IDIM-CONICET), Combatientes de Malvinas 3150, Buenos Aires 1427, Argentina
INGEBI-CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Palabras clave:Acid phosphatase; Enzymatic phosphorylation; Fludarabine-5′-monophosphate; Nucleosides-5′-monophosphate; Sugars phosphate; Escherichia coli; Phosphatases; Phosphorylation; Sugars; Acid phosphatase; Biochemical studies; Comparative studies; Enterobacter aerogenes; Enzymatic phosphorylation; Genetically modified; Monophosphates; Recombinant microorganism; Biomolecules; acid phosphatase; aldehyde; carbohydrate; dihydroxyacetone; fludarabine; inosine; ketone; nucleoside; phosphate; phosphotransferase; pyrophosphate; recombinant DNA; recombinant enzyme; sugar phosphate; bacteriology; bacterium; biochemistry; comparative study; enzyme activity; gene expression; hydrolysis; phosphate; recombination; sugar; article; bacterium; biocatalyst; Citrobacter; citrobacter amalonaticus; Citrobacter koseri; comparative study; controlled study; DNA sequence; Enterobacter aerogenes; Enterobacter cloacae; enzyme activity; Escherichia coli; hydrolysis; Klebsiella; nonhuman; Pectobacterium carotovorum; Proteus vulgaris; Providencia rettgeri; Raoultella planticola; reaction time; reduction; Serratia; Bacteria (microorganisms); Enterobacter aerogenes; Escherichia coli; Raoultella planticola; Acid Phosphatase; Carbohydrate Metabolism; Enterobacteriaceae; Escherichia coli; Nucleosides; Organisms, Genetically Modified; Phosphotransferases; Time Factors
Año:2014
Volumen:98
Número:7
Página de inicio:3013
Página de fin:3022
DOI: http://dx.doi.org/10.1007/s00253-013-5194-1
Título revista:Applied Microbiology and Biotechnology
Título revista abreviado:Appl. Microbiol. Biotechnol.
ISSN:01757598
CODEN:AMBID
CAS:acid phosphatase, 9001-77-8, 9025-88-1; dihydroxyacetone, 67255-48-5, 96-26-4; fludarabine, 21679-14-1; inosine, 58-63-9; phosphate, 14066-19-4, 14265-44-2; phosphotransferase, 9031-09-8, 9031-44-1; pyrophosphate, 14000-31-8, 7722-88-5, 7758-16-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01757598_v98_n7_p3013_Medici

Referencias:

  • Appleyard, J., The effect of alcohols on the hydrolysis of sodium phenolphthalein diphosphate by prostatic extracts (1948) Biochem J, 42, pp. 596-597. , 1258787
  • Arion, W.J., Wallin, B.K., Carlson, P.W., Lange, A.J., The specificity of glucose-6-phosphatase of intact liver microsomes (1972) J Biol Chem, 247, pp. 2558-2565. , 4336378
  • Asano, Y., Mihara, Y., Yamada, H., A new enzymatic method of selective phosphorylation of nucleosides (1999) J Mol Catal B-Enzym, 6, pp. 271-277. , 10.1016/S1381-1177(98)00081-2
  • Asano, Y., Mihara, Y., Yamada, H., A novel selective nucleoside phosphorylating enzyme from Morganella morganii (1999) J Biosci Bioeng, 87, pp. 732-738. , 16232546 10.1016/S1389-1723(99)80145-5
  • Axelrod, B., A new mode of enzymatic phosphate transfer (1948) J Biol Chem, 172, pp. 1-13. , 18920762
  • Basnakova, G., Stephens, E.R., Thaller, M.C., Rossolini, G.M., Macaskie, L.E., The use of Escherichia coli bearing a pho N gene for the removal of uranium and nickel from aqueous flows (1998) Appl Microbiol Biotechnol, 50, pp. 266-272. , 9763695 10.1007/s002530051288
  • Beacham, I.R., Periplasmic enzymes in gram-negative bacteria (1979) Int J Biochem, 10, pp. 877-883. , 389690 10.1016/0020-711X(79)90117-4
  • Boyer, P.D., Lardy, H., Myrbäck, K., (1961) The Enzymes, , (eds) 2 Academic New York
  • Choi, J.H., Lee, S.Y., Secretory and extracellular production of recombinant proteins using Escherichia coli (2004) Appl Microbiol Biotechnol, 64, pp. 625-635. , 14966662 10.1007/s00253-004-1559-9
  • Dissing, K., Uerkvitz, W., Class B nonspecific acid phosphatase from Salmonella typhimurium LT2 Phosphotransferase activity, stability and thiol group reactivity (2006) Enzyme Microb Tech, 38, pp. 683-688. , 10.1016/j.enzmictec.2005.08.026
  • Greenberg, W.A., Varvak, A., Hanson, S.R., Wong, K., Huang, H., Chen, P., Burk, M.J., Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates (2004) PNAS, 101, pp. 5788-5793. , 395986 15069189 10.1073/pnas.0307563101
  • Hokse, H., Purification of á-d-glucose-1-phosphate (1983) Starch, 35, pp. 98-100. , 10.1002/star.19830350310
  • Ishii, M., Shirae, H., Yokozeki, K., Enzymatic production of 5-methyluridine from purine nucleosides and thymine by Erwinia carotovora AJ-2992 (1989) Agric Biol Chem, 53, pp. 3209-3218. , 10.1271/bbb1961.53.3209
  • Ishikawa, Y., Mihara, Y., Gondoh, K.E.-I.S., Asano, Y., X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate (2000) EMBO J, 19, pp. 2412-2423. , 212741 10835340 10.1093/emboj/19.11.2412
  • Iturrate, L., Sánchez-Moreno, I., Oroz-Guinea, I., Pérez-Gil, J., García-Junceda, E., Preparation and characterization of a bifunctional aldolase/kinase enzyme. A more efficient biocatalyst for C-C bond formation (2010) Chem Eur J, 16, pp. 4018-4030. , 20198665 10.1002/chem.200903096
  • Mihara, Y., Utagawa, T., Yamada, H., Asano, Y., Phosphorylation of nucleosides by the mutated acid phosphatase from Morganella morganii (2000) Appl Environ Microbiol, 66, pp. 2811-2816. , 92077 10877772 10.1128/AEM.66.7.2811-2816.2000
  • Mihara, Y., Utagawa, T., Yamada, H., Asano, Y., Acid phosphatase/phosphotransferases from enteric bacteria (2001) J Biosci Bioeng, 92, pp. 50-54. , 16233057
  • Robak, T., Korycka, A., Lech-Maranda, E., Robak, P., Current status of older and new purine nucleoside analogues in the treatment of lymphoproliferative diseases (2009) Molecules, 14, pp. 1183-1226
  • Rossolini, G.M., Schippa, S., Riccio, M.L., Berlutti, F., Macaskie, L.E., Thaller, M.C., Bacterial nonspecific acid phosphohydrolases: Physiology, evolution and use as tools in microbial biotechnology (1998) Cell Mol Life Sci, 54, pp. 833-850. , 9760992 10.1007/s000180050212
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (2001) Molecular Cloning: A Laboratory Manual, , 3 Cold Spring Harbor Laboratory Press NewYork
  • Samland, A.K., Sprenger, G.A., Microbial aldolases as C-C bonding enzymes-unknown treasures and new developments (2006) Appl Microbiol Biotechnol, 71, pp. 253-264. , 16614860 10.1007/s00253-006-0422-6
  • Sanchez-Moreno, I., Garcia-Garcia, J.F., Bastida, A., Garcia-Junceda, E., Multienzyme system for dihydroxyacetone phosphate-dependent aldolase catalyzed C-C bond formation from dihydroxyacetone (2004) Chem Comm, 14, pp. 1634-1635. , 15263954 10.1039/b405220j
  • Schoevaart, R., Van Rantwijk, F., Sheldon, R.A., Carbohydrates from glycerol: An enzymatic four-step, one-pot synthesis (1999) Chem Commun, 24, pp. 2465-2466. , 10.1039/a907874f
  • Stukey, N., Carman, G.M., Identification of a novel phosphatase sequence motif (1997) Protein Sci, 6, pp. 469-472. , 2143653 9041652 10.1002/pro.5560060226
  • Tanaka, N., Hasan, Z., Hartog, A.F., Van Herk, T., Wever, R., Phosphorylation and dephosphorylation of polyhydroxy compounds by class A bacterial acid phosphatases (2003) Org Biomol Chem, 1, pp. 2833-2839. , 12968332 10.1039/b304012g
  • Reorganizing the protein space at the Universal Protein Resource (UniProt) (2012) Nucleic Acids Res, 40, pp. 71-D75. , The UniProt Consortium 3245120 10.1093/nar/gkr981
  • Valino, A.L., Palazzolo, M., Iribarren, A., Lewkowicz, E., Selection of a new whole cell biocatalyst for the synthesis of 2-deoxyribose-5-phosphate (2012) Appl Biochem Biotech, 166, pp. 300-308. , 10.1007/s12010-011-9425-6
  • Van Herk, T., Hartog, A.F., Van Der Burg, A.M., Wever, R., Regioselective phosphorylation of carbohydrates and various alcohols by bacterial acid phosphatases; Probing the substrate specificity of the enzyme from Shigella flexneri (2005) Adv Synth Catal, 347, pp. 1155-1162. , 10.1002/adsc.200505072
  • Van Herk, T., Hartog, A.F., Schoemaker, H.E., Wever, R., Simple enzymatic in situ generation of dihydroxyacetone phosphate and its use in a cascade reaction for the production of carbohydrates: Increased efficiency by phosphate cycling (2006) J Org Chem, 71, pp. 6244-6247. , 16872211 10.1021/jo060644a
  • Vincent, J.B., Crowder, M.W., Averill, B.A., Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions (1992) Trends Biochem Sci, 17, pp. 105-110. , 1412693 10.1016/0968-0004(92)90246-6
  • Wanner, B.L., Phosphorus assimilation and control of the phosphate regulon (1996) Escherichia Coli and Salmonella, Cellular and Molecular Biology, pp. 1357-1381. , F.C. Neidhardt R. Curtiss III J.L. Ingraham E.C.C. Lin K.B. Low B. Magasanik (eds) et al. 2 1 American Society for Microbiology Press Washington DC

Citas:

---------- APA ----------
Médici, R., Garaycoechea, J.I., Valino, A.L., Pereira, C.A., Lewkowicz, E.S. & Iribarren, A.M. (2014) . A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds. Applied Microbiology and Biotechnology, 98(7), 3013-3022.
http://dx.doi.org/10.1007/s00253-013-5194-1
---------- CHICAGO ----------
Médici, R., Garaycoechea, J.I., Valino, A.L., Pereira, C.A., Lewkowicz, E.S., Iribarren, A.M. "A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds" . Applied Microbiology and Biotechnology 98, no. 7 (2014) : 3013-3022.
http://dx.doi.org/10.1007/s00253-013-5194-1
---------- MLA ----------
Médici, R., Garaycoechea, J.I., Valino, A.L., Pereira, C.A., Lewkowicz, E.S., Iribarren, A.M. "A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds" . Applied Microbiology and Biotechnology, vol. 98, no. 7, 2014, pp. 3013-3022.
http://dx.doi.org/10.1007/s00253-013-5194-1
---------- VANCOUVER ----------
Médici, R., Garaycoechea, J.I., Valino, A.L., Pereira, C.A., Lewkowicz, E.S., Iribarren, A.M. A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds. Appl. Microbiol. Biotechnol. 2014;98(7):3013-3022.
http://dx.doi.org/10.1007/s00253-013-5194-1