Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effects of vacuum-drying and freeze-drying on the cell viability of a commercial baker's yeast, Saccharomyces cerevisiae, strain with different endogenous contents of trehalose were analyzed. An osmotolerant Zygosaccharomyces rouxii strain was used for comparative purposes. Higher viability values were observed in cells after vacuum-drying than after freeze-drying. Internal concentrations of trehalose in the range 10-20% protected cells in both dehydration processes. Endogenous trehalose concentrations did not affect the water sorption isotherm nor the T(g) values. The effect of external matrices of trehalose and maltodextrin was also studied. The addition of external trehalose improved the survival of S. cerevisiae cells containing 5% internal trehalose during dehydration. Maltodextrin (1.8 kDa) failed to protect vacuum-dried samples at 40 °C. The major reduction in the viability during the freeze-drying process of the sensitive yeast cells studied was attributed to the freezing step. The suggested protective mechanisms for each particular system are vitrification and the specific interactions of trehalose with membranes and/or proteins. The failure of maltodextrins to protect cells was attributed to the fact that none of the suggested mechanisms of protection could operate in these systems.

Registro:

Documento: Artículo
Título:Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices
Autor:Cerrutti, P.; Segovia De Huergo, M.; Galvagno, M.; Schebor, C.; Del Pilar Buera, M.
Filiación:Departamento de Industrias, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Departamento de Ingeniería Química, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
Palabras clave:maltodextrin; trehalose; article; cell viability; dehydration; freeze drying; nonhuman; physical chemistry; protein protein interaction; Saccharomyces cerevisiae; vacuum; yeast cell; Zygosaccharomyces; Saccharomyces cerevisiae; Saccharomyces cerevisiae; Zygosaccharomyces; Zygosaccharomyces rouxii; Zygosaccharomyces rouxii
Año:2000
Volumen:54
Número:4
Página de inicio:575
Página de fin:580
DOI: http://dx.doi.org/10.1007/s002530000428
Título revista:Applied Microbiology and Biotechnology
Título revista abreviado:Appl. Microbiol. Biotechnol.
ISSN:01757598
CODEN:AMBID
CAS:maltodextrin, 9050-36-6; trehalose, 99-20-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01757598_v54_n4_p575_Cerrutti

Referencias:

  • Arakawa, T., Timasheff, S.N., Stabilization of protein structure by sugars (1982) Biochemistry, 21, pp. 6536-6544
  • Attfield, P.V., Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response (1987) FEBS Lett, 225, pp. 259-263
  • Attfield, P.V., Stress tolerance: The key to effective strains of industrial baker's yeast (1997) Nat Biotechnol, 15, pp. 1351-1357
  • Attfield, P.V., Raman, A., Northcott, C., Constructions of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance (1992) FEBS Microbiol Lett, 94, pp. 271-276
  • Berny, J.F., Hennebert, G.L., Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates (1991) Mycologia, 83, pp. 805-815
  • Cardona, S., Schebor, C., Buera, M.P., Chirife, J., Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization (1997) J Food Sci, 62, pp. 105-112
  • Crowe, L.M., Mouradian, R., Crowe, J.H., Jackson, S.A., Womersley, C., Effects of carbohydrate on membrane stability at low water activities (1984) Biochem Biophys Acta, 769, pp. 141-150
  • Crowe, J., Crowe, L., Carpenter, J.F., Winstrom, C.A., Stabilization of dry phospholipid bilayers and proteins by sugars (1987) Biochem J, 242, pp. 1-10
  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Preserving dry biomaterials: The water replacement hypothesis (1993) Biopharmaceutics, 6, pp. 28-37
  • Crowe, L.M., Reid, D.S., Crowe, J.H., Is trehalose special for preserving dry biomaterials? (1996) Biophys J, 71, pp. 2087-2093
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annu Rev Physiol, 60, pp. 73-103
  • De Araujo, P.S., The role of trehalose in cell stress (1996) Braz J Med Biol Res, 29, pp. 873-875
  • Diniz-Mendes, L., Bernardes, E., De Araujo, P.S., Panek, A.D., Paschoalin, V.M.F., Preservation of frozen yeast cells by trehalose (1999) Biotechnol Bioeng, 65, pp. 572-578
  • Evans, I.H., (1990) Yeast strains for baking, pp. 13-45. , Spencer JF, Spencer DM (eds) Yeast technology. Springer, Berlin Heidelberg New York
  • Fernandez, J., Soto, T., Vicente-Soler, J., Cansado, J., Gacto, M., Increased thermal stability of the enzyme content in permeabilized whole cells from the fission yeast Schizosaccharomyces pombe by exogenous trehalose and other compounds (1995) Can J Microbiol, 41, pp. 636-641
  • Gadd, G.M., Chalmers, K., Reed, R.H., The role of trehalose indehydration resistance of Saccharomyces cerevisiae (1987) FEMS Microbiol Lett, 48, pp. 249-254
  • Hottiger, T., Boller, T., Wiemken, A., Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: Is trehalose a thermoprotectant? (1989) FEBS Lett, 255, pp. 431-434
  • Hounsa, C., Brandt, E.V., Thevelein, J., Hohmann, S., Prior, B.A., Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress (1998) Microbiology, 144, pp. 671-680
  • Levine, H., Slade, L., A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs) (1986) Carbohydr Polym, 6, pp. 213-239
  • Lillie, S.H., Pringle, J.R., Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation (1980) J Bacteriol, 143, pp. 1384-1394
  • Lim, M.H., Reid, D.S., (1991) Studies of reaction kinetics in relation to the Tg' of polymers in frozen model systems, pp. 103-122. , Levine H, Slade L (eds) Water relationships in foods. Plenum Press, New York
  • Lodato, P., Segovia de Huergo, M., Buera, M.P., Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices (1999) Appl Microbiol Biotechnol, 52, pp. 215-220
  • Miller, D., De Pablo, J.J., Corti, H., Thermophysical properties of trehalose and its concentrated aqueous solutions (1997) Pharm Res, 14, pp. 578-590
  • Mugnier, J., Jung, G., Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels (1985) Appl Environ Microbiol, 50, pp. 108-114
  • Roos, Y., Melting and glass transitions of low molecular weight carbohydrates (1993) Carbohydr Res, 238, pp. 39-48
  • Roos, Y., Karel, M., Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions (1991) J Food Sci, 56, pp. 1676-1681
  • Slade, L., Levine, H., Beyond water activity recent advances based on an alternative approach to the assessment of food quality and food safety (1991) Crit Rev Food Sci Nutr, 30, pp. 115-360
  • Sun, W.Q., Leopold, A.C., Cytoplasmatic vitrification and survival of anhydrobiotic organisms (1997) Comp Biochem Physiol, 117 A, pp. 327-333
  • Tan, S.C., Van Ingen, C.W., Talsma, H., Van Miltenburg, J.C., Steffensen, C.L., Vlug, I.J.A., Stalpers, J.A., Freeze drying of fungi: Influence of composition and glass transition temperature of the protectants (1995) Cryobiology, 32, pp. 60-67
  • Tivedi, N.B., Baker's yeast (1986) CRC Crit Rev Biotechnol, 4, pp. 75-109
  • Van Dijck, P., Colavizza, D., Smet, P., Thevelein, J.M., Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae (1995) Appl Environ Microbiol, 61, pp. 109-115
  • Van Laere, A., Trehalose reserve and/or stress metabolite? (1989) FEMS Microbiol Rev, 63, pp. 201-210
  • Wiemken, A., Trehalose in yeast, stress protectant rather than reserve carbohydrate (1990) Antonie Van Leeuwenhoek, 58, pp. 209-217

Citas:

---------- APA ----------
Cerrutti, P., Segovia De Huergo, M., Galvagno, M., Schebor, C. & Del Pilar Buera, M. (2000) . Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Applied Microbiology and Biotechnology, 54(4), 575-580.
http://dx.doi.org/10.1007/s002530000428
---------- CHICAGO ----------
Cerrutti, P., Segovia De Huergo, M., Galvagno, M., Schebor, C., Del Pilar Buera, M. "Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices" . Applied Microbiology and Biotechnology 54, no. 4 (2000) : 575-580.
http://dx.doi.org/10.1007/s002530000428
---------- MLA ----------
Cerrutti, P., Segovia De Huergo, M., Galvagno, M., Schebor, C., Del Pilar Buera, M. "Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices" . Applied Microbiology and Biotechnology, vol. 54, no. 4, 2000, pp. 575-580.
http://dx.doi.org/10.1007/s002530000428
---------- VANCOUVER ----------
Cerrutti, P., Segovia De Huergo, M., Galvagno, M., Schebor, C., Del Pilar Buera, M. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Appl. Microbiol. Biotechnol. 2000;54(4):575-580.
http://dx.doi.org/10.1007/s002530000428