Artículo

Wood, I.; Albano, J.M.R.; Filho, P.L.O.; Couto, V.M.; de Farias, M.A.; Portugal, R.V.; de Paula, E.; Oliveira, C.L.P.; Pickholz, M. "A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques" (2018) European Biophysics Journal. 47(5):561-571
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we developed a coarse-grained model of sumatriptan suitable for extensive molecular dynamics simulations. First, we confirmed the interfacial distribution of this drug in bilayers through cryogenic transmission electron microscopy and small-angle X-ray scattering techniques, as was predicted by our previous atomistic simulations. Based on these simulations, we developed a coarse-grained model for sumatriptan able to reproduce its overall molecular behavior, captured by atomistic simulations and experiments. We then tested the sumatriptan model in a micellar environment along with experimental characterization of sumatriptan-loaded micelles. The simulation results showed good agreement with photon correlation spectroscopy and electrophoretic mobility experiments performed in this work. The particle size of the obtained micelles was comparable with the simulated ones; meanwhile, zeta-potential results suggest adsorption of the drug on the micellar surface. This model is a step forward in the search for a suitable drug-delivery system for sumatriptan. © 2018, European Biophysical Societies' Association.

Registro:

Documento: Artículo
Título:A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques
Autor:Wood, I.; Albano, J.M.R.; Filho, P.L.O.; Couto, V.M.; de Farias, M.A.; Portugal, R.V.; de Paula, E.; Oliveira, C.L.P.; Pickholz, M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Física de Buenos Aires (IFIBA), CONICET–Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biologia, University of Campinas, Campinas, SP 13083-862, Brazil
Institute of Physics, University of São Paulo, Rua do Matão, 1371, São Paulo, SP CEP 05508-090, Brazil
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil
Palabras clave:Coarse-grained model; Cryo-TEM; Molecular dynamics; SAXS; Sumatriptan; liposome; poloxamer; sumatriptan; sumatriptan; Article; bilayer membrane; controlled study; cryogenic transmission electron microscopy; drug adsorption; drug delivery system; drug distribution; electrophoretic mobility; environment; lipid bilayer; lipid vesicle; micelle; molecular dynamics; particle size; photon correlation spectroscopy; polymerization; priority journal; transmission electron microscopy; X ray crystallography; zeta potential; chemistry; conformation; electron microscopy; molecular dynamics; small angle scattering; X ray diffraction; Lipid Bilayers; Liposomes; Micelles; Microscopy, Electron; Molecular Conformation; Molecular Dynamics Simulation; Poloxamer; Scattering, Small Angle; Sumatriptan; X-Ray Diffraction
Año:2018
Volumen:47
Número:5
Página de inicio:561
Página de fin:571
DOI: http://dx.doi.org/10.1007/s00249-018-1278-2
Título revista:European Biophysics Journal
Título revista abreviado:Eur. Biophys. J.
ISSN:01757571
CODEN:EBJOE
CAS:poloxamer, 9003-11-6; sumatriptan, 103628-46-2; Lipid Bilayers; Liposomes; Micelles; Poloxamer; Sumatriptan
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01757571_v47_n5_p561_Wood

Referencias:

  • Basak, R., Bandyopadhyay, R., Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH (2013) Langmuir, 29, pp. 4350-4356
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Molecular dynamics with coupling to an external bath (1984) J Chem Phys, 81, pp. 3684-3690
  • Bhattacharjee, S., (2016) DLS and zeta potential—What they are and what they are not?, , Elsevier, Amsterdam
  • Cereda, C.M.S., Brunetto, G.B., de Araújo, D.R., de Paula, E., Liposomal formulations of prilocaine, lidocaine and mepivacaine prolong analgesic duration (2006) Can J Anesth, 53, pp. 1092-1097
  • Gasperini, A.A.M., Puentes-Martinez, X.E., Balbino, T.A., Association between cationic liposomes and low molecular weight hyaluronic acid (2015) Langmuir, 31, pp. 3308-3317
  • Girotra, P., Singh, S.K., A comparative study of orally delivered PBCA and ApoE coupled BSA nanoparticles for brain targeting of sumatriptan succinate in therapeutic management of migraine (2016) Pharm Res, 33, pp. 1682-1695
  • Gulati, N., Intranasal delivery of chitosan nanoparticles for migraine therapy (2013) Sci Pharm, 81, pp. 843-854
  • Haddish-Berhane, N., Rickus, J.L., Haghighi, K., The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems (2007) Int J Nanomedicine, 2, pp. 315-331. , PID: 18019831
  • Hansraj, G.P., Singh, S.K., Kumar, P., Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential (2015) Int J Biol Macromol, 81, pp. 467-476
  • Hassan, P.A., Rana, S., Verma, G., Making sense of Brownian motion: colloid characterization by dynamic light scattering (2015) Langmuir, 31, pp. 3-12
  • Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E., GROMACS 4: algorithms for highly efficient, load balanced, and scalable molecular simulations (2008) J Chem Theory Comput, 4, pp. 435-447. , PID: 26620784
  • Horn, J.N., Kao, T.-C., Coarse-grained molecular dynamics provides insight into the interactions of lipids and cholesterol with rhodopsin (2014) Advances in experimental medicine and biology, , Filizola M, (ed), Springer, Netherlands
  • Ito, T., Sun, L., Bevan, M.A., Crooks, R.M., Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering (2004) Langmuir, 20, pp. 6940-6945
  • Karplus, M., McCammon, J.A., Molecular dynamics simulations of biomolecules (2002) Nat Struct Biol, 9, pp. 646-652
  • Marrink, S.J., Risselada, H.J., Yefimov, S., The MARTINI force field: coarse-grained model for biomolecular simulations (2007) J Phys Chem B, 111, pp. 7812-7824
  • Maulucci, G., De Spirito, M., Arcovito, G., (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times.
  • Meller, A., Bar-Ziv, R., Tlusty, T., Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy (1998) Biophys J, 74, pp. 1541-1548
  • Monticelli, L., Kandasamy, S.K., Periole, X., The MARTINI coarse-grained force field: extension to proteins (2008) J Chem Theory Comput, 4, pp. 819-834
  • Oliveira, C.L.P., Gerbelli, B.B., Silva, E.R.T., Gaussian deconvolution: a useful method for a form-free modeling of scattering data from mono- and multilayered planar systems (2012) J Appl Crystallogr, 45, pp. 1278-1286
  • Oshiro, A., Silva, D.C., De, M.J.C., Pluronics F—127/L-81 binary hydrogels as drug-delivery systems: influence of physicochemical aspects on release kinetics and cytotoxicity (2014) Langmuir, 30, pp. 13689-13698. , PID: 25343461
  • Patil, Y.P., Jadhav, S., Novel methods for liposome preparation (2014) Chem Phys Lipids, 177, pp. 8-18. , PID: 24220497
  • Pedersen, J.S., Oliveira, C.L.P., Hübschmann, H.B., Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle X-ray scattering (2012) Biophys J, 102, pp. 2372-2380
  • Pickholz, M., Giupponi, G., Coarse-grained simulations of local anesthetics encapsulated into a liposome (2010) J Phys Chem B, 114, pp. 7009-7015
  • Ross, D.J., Sigel, R., Mie scattering by soft core-shell particles and its applications to ellipsometric light scattering (2012) Phys Rev E, 85, p. 56710
  • Sharma, P.K., Bhatia, S.R., Effect of anti-inflammatories on Pluronic ® F127: micellar assembly, gelation and partitioning (2004) Int J Pharm, 278, pp. 361-377
  • Steichen, S.D., Caldorera-Moore, M., Peppas, N.A., A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics (2013) Eur J Pharm Sci, 48, pp. 416-427. , PID: 23262059
  • Tepper, S.J., Rapoport, A.M., Sheftell, F.D., Mechanisms of action of the 5-HT1B/1D receptor agonists (2002) Arch Neurol, 59, pp. 1084-1088. , PID: 12117355
  • Tfelt-Hansen, P.C., Does sumatriptan cross the blood–brain barrier in animals and man? (2010) J Headache Pain, 11, pp. 5-12
  • Varga, Z., Yuana, Y., Grootemaat, A.E., Towards traceable size determination of extracellular vesicles (2014) J Extracell Vesicles
  • Wojnar-Horton, R.E., Hackett, L.P., Yapp, P., Distribution and excretion of sumatriptan in human milk (1996) Br J Clin Pharmacol, 41, pp. 217-221
  • Wood, I., Pickholz, M., Concentration effects of sumatriptan on the properties of model membranes by molecular dynamics simulations (2013) Eur Biophys J, 42, pp. 833-841
  • Wood, I., Pickholz, M., Triptan partition in model membranes (2014) J Mol Model, 20, pp. 1-8
  • Wood, I., Martini, M.F., Albano, J.M.R., Coarse-grained study of pluronic F127: Comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water (2016) J Mol Struct, 1109, pp. 106-113
  • Yesylevskyy, S.O., Schäfer, L.V., Sengupta, D., Marrink, S.J., Polarizable water model for the coarse-grained MARTINI force field (2010) PLoS Comput Biol, 6, pp. 1-17
  • Zhang, Y., Lam, Y.M., Controlled synthesis and association behavior of graft Pluronic in aqueous solutions (2007) J Colloid Interface Sci, 306, pp. 398-404

Citas:

---------- APA ----------
Wood, I., Albano, J.M.R., Filho, P.L.O., Couto, V.M., de Farias, M.A., Portugal, R.V., de Paula, E.,..., Pickholz, M. (2018) . A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques. European Biophysics Journal, 47(5), 561-571.
http://dx.doi.org/10.1007/s00249-018-1278-2
---------- CHICAGO ----------
Wood, I., Albano, J.M.R., Filho, P.L.O., Couto, V.M., de Farias, M.A., Portugal, R.V., et al. "A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques" . European Biophysics Journal 47, no. 5 (2018) : 561-571.
http://dx.doi.org/10.1007/s00249-018-1278-2
---------- MLA ----------
Wood, I., Albano, J.M.R., Filho, P.L.O., Couto, V.M., de Farias, M.A., Portugal, R.V., et al. "A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques" . European Biophysics Journal, vol. 47, no. 5, 2018, pp. 561-571.
http://dx.doi.org/10.1007/s00249-018-1278-2
---------- VANCOUVER ----------
Wood, I., Albano, J.M.R., Filho, P.L.O., Couto, V.M., de Farias, M.A., Portugal, R.V., et al. A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques. Eur. Biophys. J. 2018;47(5):561-571.
http://dx.doi.org/10.1007/s00249-018-1278-2