Artículo

Pallavicini, C.; Monastra, A.; Bardeci, N.G.; Wetzler, D.; Levi, V.; Bruno, L. "Characterization of microtubule buckling in living cells" (2017) European Biophysics Journal. 46(6):581-594
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3–2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation. © 2017, European Biophysical Societies' Association.

Registro:

Documento: Artículo
Título:Characterization of microtubule buckling in living cells
Autor:Pallavicini, C.; Monastra, A.; Bardeci, N.G.; Wetzler, D.; Levi, V.; Bruno, L.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, JM Gutiérrez 1150, Los Polvorines, Buenos Aires, 1613, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:Active forces; Buckling; Filament tracking; Fluorescence microscopy; Living cells; Microtubules; molecular motor; animal cell; Article; cell organelle; confocal microscopy; controlled study; cytoskeleton; endosome; fluorescence analysis; fluorescence microscopy; intracellular space; melanophore; microfilament; microtubule; nonhuman; polymerization; priority journal; simulation; Xenopus laevis; animal; biological model; biomechanics; cell line; cell survival; mechanics; metabolism; microtubule; movement (physiology); Animals; Biomechanical Phenomena; Cell Line; Cell Survival; Mechanical Phenomena; Microtubules; Models, Biological; Movement; Xenopus laevis
Año:2017
Volumen:46
Número:6
Página de inicio:581
Página de fin:594
DOI: http://dx.doi.org/10.1007/s00249-017-1207-9
Título revista:European Biophysics Journal
Título revista abreviado:Eur. Biophys. J.
ISSN:01757571
CODEN:EBJOE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01757571_v46_n6_p581_Pallavicini

Referencias:

  • Akhmanova, A., Steinmetz, M.O., Control of microtubule organization and dynamics: two ends in the limelight (2015) Nat Rev Mol Cell Biol, 16 (12), pp. 711-726. , COI: 1:CAS:528:DC%2BC2MXhvVOgt7%2FI, PID: 26562752
  • Bicek, A.D., Tüzel, E., Kroll, D.M., Odde, D.J., Analysis of microtubule curvature (2007) Methods Cell Biol, 83, pp. 237-268. , COI: 1:CAS:528:DC%2BD1cXht12rsbg%3D, PID: 17613311
  • Bicek, A.D., Tuzel, E., Demtchouk, A., Uppalapati, M., Hancock, W.O., Kroll, D.M., Odde, D.J., Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells (2009) Mol Biol Cell, 20 (12), pp. 2943-2953. , COI: 1:CAS:528:DC%2BD1MXhtVWru77E, PID: 19403700
  • Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Weitz, D.A., Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement (2006) J Cell Biol, 173 (5), pp. 733-741. , COI: 1:CAS:528:DC%2BD28Xls1Shsrc%3D, PID: 16754957
  • Brangwynne, C.P., MacKintosh, F.C., Weitz, D.A., Force fluctuations and polymerization dynamics of intracellular microtubules (2007) Proc Natl Acad Sci USA, 104 (41), pp. 16128-16133. , COI: 1:CAS:528:DC%2BD2sXhtF2hu7bF, PID: 17911265
  • Brangwynne, C.P., Koenderink, G.H., Mackintosh, F.C., Weitz, D.A., Nonequilibrium microtubule fluctuations in a model cytoskeleton (2008) Phys Rev Lett, 100 (11), p. 118104. , PID: 18517833
  • Charlebois, B.D., Schek, H.T., 3rd, Hunt, A.J., Nanometer-resolution microtubule polymerization assays using optical tweezers and microfabricated barriers (2010) Methods Cell Biol, 95, pp. 207-219. , COI: 1:CAS:528:DC%2BC3cXpvFahu78%3D, PID: 20466137
  • Chernick, M.R., (2007) Bootstrap methods: a guide for practitioners and researchers, 2nd edn
  • Dogterom, M., Yurke, B., Measurement of the force–velocity relation for growing microtubules (1997) Science, 278 (5339), pp. 856-860. , COI: 1:CAS:528:DyaK2sXmvFOqur8%3D, PID: 9346483
  • Felgner, H., Frank, R., Schliwa, M., Flexural rigidity of microtubules measured with the use of optical tweezers (1996) J Cell Sci, 109, pp. 509-516. , COI: 1:CAS:528:DyaK28XisVWntrg%3D, PID: 8838674
  • Fletcher, D.A., Mullins, R.D., Cell mechanics and the cytoskeleton (2010) Nature, 463 (7280), pp. 485-492. , COI: 1:CAS:528:DC%2BC3cXht1Slu7o%3D, PID: 20110992
  • Gardel, M.L., Kasza, K.E., Brangwynne, C.P., Liu, J., Weitz, D.A., Mechanical response of cytoskeletal networks (2008) Methods Cell Biol, 89, pp. 487-519. , COI: 1:CAS:528:DC%2BD1MXht1agsbzK, PID: 19118688
  • Gauger, E., Stark, H., Numerical study of a microscopic artificial swimmer (2006) Phys Rev E Stat Nonlinear Soft Matter Phys, 74 (2), p. 021907
  • Gittes, F., Mickey, B., Nettleton, J., Howard, J., Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape (1993) J Cell Biol, 120 (4), pp. 923-934. , COI: 1:CAS:528:DyaK3sXnsFKqsw%3D%3D, PID: 8432732
  • Gittes, F., Meyhofer, E., Baek, S., Howard, J., Directional loading of the kinesin motor molecule as it buckles a microtubule (1996) Biophys J, 70 (1), pp. 418-429. , COI: 1:CAS:528:DyaK28XjslGrsw%3D%3D, PID: 8770218
  • Gross, S.P., Tuma, M.C., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I., Interactions and regulation of molecular motors in Xenopus melanophores (2002) J Cell Biol, 156 (5), pp. 855-865. , COI: 1:CAS:528:DC%2BD38XitVGmtr8%3D, PID: 11864991
  • Hendricks, A.G., Holzbaur, E.L., Goldman, Y.E., Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors (2012) Proc Natl Acad Sci USA, 109 (45), pp. 18447-18452. , COI: 1:CAS:528:DC%2BC38XhslymtbjN, PID: 23091040
  • Howard, J., (2001) Mechanics of motor proteins and the cytoskeleton, , Sinauer Associates, Inc, Sunderland
  • Howard, J., Elastic and damping forces generated by confined arrays of dynamic microtubules (2006) Phys Biol, 3 (1), pp. 54-66. , COI: 1:CAS:528:DC%2BD28XjvVChurc%3D, PID: 16582470
  • Howard, J., Mechanical signaling in networks of motor and cytoskeletal proteins (2009) Annu Rev Biophys, 38, pp. 217-234. , COI: 1:CAS:528:DC%2BD1MXntlentLs%3D, PID: 19416067
  • Jin, M.Z., Cq, R., Localized buckling of a microtubule surrounded by randomly distributed cross linkers (2013) Phys Rev E, 88. , 012701
  • Kabir, A.M.R., Inoue, D., Afrin, T., Mayama, H., Sada, K., Kakugo, A., Buckling of microtubules on a 2D elastic medium (2015) Sci Rep, 5, p. 17222. , COI: 1:CAS:528:DC%2BC2MXhvFent7%2FJ, PID: 26596905
  • Kent, I.A., Rane, P.S., Dickinson, R.B., Ladd, A.J., Lele, T.P., Transient pinning and pulling: a mechanism for bending microtubules (2016) PLoS One, 11 (3). , PID: 26974838
  • Kimura, A., Onami, S., Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration (2005) Dev Cell, 8 (5), pp. 765-775. , COI: 1:CAS:528:DC%2BD2MXkslenur8%3D, PID: 15866166
  • Kulic, I.M., Brown, A.E., Kim, H., Kural, C., Blehm, B., Selvin, P.R., Nelson, P.C., Gelfand, V.I., The role of microtubule movement in bidirectional organelle transport (2008) Proc Natl Acad Sci USA, 105 (29), pp. 10011-10016. , COI: 1:CAS:528:DC%2BD1cXptFGltbk%3D, PID: 18626022
  • Leidel, C., Longoria, R.A., Gutierrez, F.M., Schubeita, G.T., Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport (2012) Biophys J, 103 (3), pp. 492-500
  • Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors (2006) Biophys J, 90 (1), pp. 318-327. , COI: 1:CAS:528:DC%2BD2MXhtlertrfL, PID: 16214870
  • Mallik, R., Carter, B.C., Lex, S.A., King, S.J., Gross, S.P., Cytoplasmic dynein functions as a gear in response to load (2004) Nature, 427, pp. 649-652. , COI: 1:CAS:528:DC%2BD2cXhtFCnu74%3D, PID: 14961123
  • Mickey, B., Howard, J., Rigidity of microtubules is increased by stabilizing agents (1995) J Cell Biol, 130 (4), pp. 909-917. , COI: 1:CAS:528:DyaK2MXnsVymtLs%3D, PID: 7642706
  • Newman, M.E.J., Power laws, Pareto distributions and Zipf’s law (2005) Contemp Phys, 46 (5), p. 28
  • Nicastro, D., Schwartz, C., Pierson, J., Gaudette, R., Porter, M.E., McIntosh, J.R., The molecular architecture of axonemes revealed by cryoelectron tomography (2006) Science, 313 (5789), pp. 944-948. , COI: 1:CAS:528:DC%2BD28XotFCitbs%3D, PID: 16917055
  • Olesen, O.F., Kawabata-Fukui, H., Yoshizato, K., Noro, N., Molecular cloning of XTP, a tau-like microtubule-associated protein from Xenopus laevis tadpoles (2002) Gene, 283 (1-2), pp. 299-309. , COI: 1:CAS:528:DC%2BD38XhsFSjsbw%3D, PID: 11867237
  • Pallavicini, C., Levi, V., Wetzler, D.E., Angiolini, J.F., Benseñor, L., Desposito, M.A., Bruno, L., Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells (2014) Biophys J, 106 (12), pp. 2625-2635. , COI: 1:CAS:528:DC%2BC2cXhtVCjurfF, PID: 24940780
  • Paluch, E.K., Nelson, C.M., Biais, N., Fabry, B., Moeller, J., Pruitt, B.L., Kudryasheva, G., Federle, W., Mechanotransduction: use the force(s) (2015) BMC Biol, 13, p. 47. , PID: 26141078
  • Portran, D., Zoccoler, M., Gaillard, J., Stoppin-Mellet, V., Neumann, E., Arnal, I., Martiel, J.L., Vantard, M., MAP65/Ase1 promote microtubule flexibility (2013) Mol Biol Cell, 24 (12), pp. 1964-1973. , COI: 1:CAS:528:DC%2BC3sXhtVajtrnK, PID: 23615441
  • Rauch, P., Heine, P., Goettgens, B., Käs, J.A., Forces from the rear: deformed microtubules in neuronal growth cones influence retrograde flow and advancement (2013) New J Phys, 15, p. 015007
  • Robert, A., Herrmann, H., Davidson, M.W., Gelfand, V.I., Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases (2014) FASEB J, 28 (7), pp. 2879-2890. , COI: 1:CAS:528:DC%2BC2cXhtFaltb%2FF, PID: 24652946
  • Rogers, S.L., Tint, I.S., Fanapour, P.C., Gelfand, V.I., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro (1997) Proc Natl Acad Sci USA, 94 (8), pp. 3720-3725. , COI: 1:CAS:528:DyaK2sXis1egtL0%3D, PID: 9108044
  • Schnitzer, M.J., Visscher, K., Block, S.M., Force production by single kinesin motors (2000) Nat Cell Biol, 2 (10), pp. 718-723. , COI: 1:CAS:528:DC%2BD3cXnsVyntLo%3D, PID: 11025662
  • Shekhar, N., Neelam, S., Wu, J., Ladd, A.J., Dickinson, R.B., Lele, T.P., Fluctuating motor forces bend growing microtubules (2013) Cell Mol Bioeng, 6 (2), pp. 120-129. , COI: 1:CAS:528:DC%2BC3sXhtVahu7vJ, PID: 24039637
  • Soppina, V., Rai, A.K., Ramaiya, A.J., Barak, P., Mallik, R., Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes (2009) Proc Natl Acad Sci USA, 106 (46), pp. 19381-19386. , COI: 1:CAS:528:DC%2BD1MXhsFGns7vL, PID: 19864630
  • Walczak, C.E., Heald, R., Mechanisms of mitotic spindle assembly and function (2008) Int Rev Cytol, 265, pp. 111-158. , COI: 1:CAS:528:DC%2BD1cXktlyjtLg%3D, PID: 18275887
  • Wu, J., Misra, G., Russell, R.J., Ladd, A.J., Lele, T.P., Dickinson, R.B., Effects of dynein on microtubule mechanics and centrosome positioning (2011) Mol Biol Cell, 22 (24), pp. 4834-4841. , COI: 1:CAS:528:DC%2BC3MXhs12nsLzF, PID: 22013075
  • Yamada, S., Wirtz, D., Kuo, S.C., Mechanics of living cells measured by laser tracking microrheology (2000) Biophys J, 78 (4), pp. 1736-1747. , COI: 1:CAS:528:DC%2BD3cXisVWgtrw%3D, PID: 10733956

Citas:

---------- APA ----------
Pallavicini, C., Monastra, A., Bardeci, N.G., Wetzler, D., Levi, V. & Bruno, L. (2017) . Characterization of microtubule buckling in living cells. European Biophysics Journal, 46(6), 581-594.
http://dx.doi.org/10.1007/s00249-017-1207-9
---------- CHICAGO ----------
Pallavicini, C., Monastra, A., Bardeci, N.G., Wetzler, D., Levi, V., Bruno, L. "Characterization of microtubule buckling in living cells" . European Biophysics Journal 46, no. 6 (2017) : 581-594.
http://dx.doi.org/10.1007/s00249-017-1207-9
---------- MLA ----------
Pallavicini, C., Monastra, A., Bardeci, N.G., Wetzler, D., Levi, V., Bruno, L. "Characterization of microtubule buckling in living cells" . European Biophysics Journal, vol. 46, no. 6, 2017, pp. 581-594.
http://dx.doi.org/10.1007/s00249-017-1207-9
---------- VANCOUVER ----------
Pallavicini, C., Monastra, A., Bardeci, N.G., Wetzler, D., Levi, V., Bruno, L. Characterization of microtubule buckling in living cells. Eur. Biophys. J. 2017;46(6):581-594.
http://dx.doi.org/10.1007/s00249-017-1207-9