Maltaneri, R.E.; Schiappacasse, A.; Chamorro, M.E.; Nesse, A.B.; Vittori, D.C. "Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration" (2018) European Journal of Cell Biology. 97(6):411-421
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Calcium (Ca2+) plays an important role in angiogenesis, as it activates the cell migration machinery. Different proangiogenic factors have been demonstrated to induce transient Ca2+ increases in endothelial cells. This has raised interest in the contribution of Ca2+ channels to cell migration, and in a possible use of channel-blocking compounds in angiogenesis-related pathologies. We have investigated the ability of erythropoietin (Epo), a cytokine recently involved in angiogenesis, to induce Ca2+ influx through different types of membrane channels in EA.hy926 endothelial cells. The voltage-dependent Ca2+ channel antagonists amlodipine and diltiazem inhibited an Epo-triggered transient rise in intracellular Ca2+, similarly to a specific inhibitor (Pyr3) and a blocking antibody against the transient potential calcium channel 3 (TRPC3). Unlike diltiazem, amlodipine and the TRPC3 inhibitors prevented the stimulating action of Epo in cell migration and in vitro angiogenesis assays. Amlodipine was also able to inhibit an increase in endothelial cell migration induced by Epo in an inflammatory environment generated with TNF-α. These results support the participation of Ca2+ entry through voltage-dependent and transient potential channels in Epo-driven endothelial cell migration, highlighting the antiangiogenic activity of amlodipine. © 2018 Elsevier GmbH


Documento: Artículo
Título:Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration
Autor:Maltaneri, R.E.; Schiappacasse, A.; Chamorro, M.E.; Nesse, A.B.; Vittori, D.C.
Filiación:Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Amlodipine; Angiogenesis; Calcium channels; Diltiazem; Erythropoietin; amlodipine; blocking antibody; calcium channel; diltiazem; erythropoietin; reactive oxygen metabolite; transient receptor potential channel 3; tumor necrosis factor; calcium channel; erythropoietin; angiogenesis; angiogenesis assay; antiangiogenic activity; Article; calcium cell level; calcium transport; cell migration; endothelium cell; human; human cell; human cell culture; in vitro study; membrane channel; priority journal; umbilical vein endothelial cell; cell culture; cell membrane; cell motion; cytology; endothelium cell; metabolism; Calcium Channels; Cell Membrane; Cell Movement; Cells, Cultured; Endothelial Cells; Erythropoietin; Humans
Página de inicio:411
Página de fin:421
Título revista:European Journal of Cell Biology
Título revista abreviado:Eur. J. Cell Biol.
CAS:amlodipine, 88150-42-9, 103129-82-4, 736178-83-9; diltiazem, 33286-22-5, 42399-41-7; erythropoietin, 11096-26-7; Calcium Channels; Erythropoietin


  • Aranda, E., Owen, G.I., A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line (2009) Biol. Res., 42, pp. 377-389
  • Bossu, J.L., Elhamdani, A., Feltz, A., Voltage-dependent calcium entry in confluent bovine capillary endothelial cells (1992) FEBS Lett., 299, pp. 239-242
  • Buemi, M., Vaccaro, M., Sturiale, A., Galeano, M.R., Sansotta, C., Cavallari, V., Floccari, F., Vermiglio, G., Recombinant human erythropoietin influences revascularization and healing in a rat model of random ischaemic flaps (2002) Acta Derm. Venereol., 82, pp. 411-417
  • Catterall, W.A., Voltage-gated calcium channels (2011) Cold Spring Harb. Perspect. Biol., 3
  • Cheng, K.T., Rosenhouse-Dantsker, A., Malik, A.B., Contribution and regulation of calcium channels in endothelial cells (2016) Vascular Ion Channels, Physiology and Disease, pp. 37-62. , I. Levitan A. Dopico Springer International Publishing New York
  • Edgell, C.J., McDonald, C.C., Graham, J.B., Permanent cell line expressing human factor VIII-related antigen established by hybridization (1983) Proc. Natl. Acad. Sci. U. S. A., 80, pp. 3734-3737
  • Eickelberg, O., Roth, M., Mussmann, R., Rüdiger, J.J., Tamm, M., Perruchoud, A.P., Block, L.H., Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-κB in primary human vascular smooth muscle cells (1999) Circulation, 99, pp. 2276-2282
  • Faehling, M., Kroll, J., Föhr, K.J., Fellbrich, G., Mayr, U., Trischler, G., Waltenberger, J., Essential role of calcium in vascular endothelial growth factor A-induced signaling: mechanism of the antiangiogenic effect of carboxyamidotriazole (2002) FASEB J., 16, pp. 1805-1807
  • Fares, H., Di Nicolantonio, J.J., O'Keefe, J.H., Lavie, C.J., Amlodipine in hypertension: a first-line agent with efficacy for improving blood pressure and patient outcomes (2016) Open Heart, 3
  • Ge, R., Tai, Y., Sun, Y., Zhou, K., Yang, S., Cheng, T., Zou, Q., Wang, Y., Critical role of TRPC6 channels in VEGF-mediated angiogenesis (2009) Cancer Lett., 283, pp. 43-51
  • Giannone, G., Rondé, P., Gaire, M., Beaudouin, J., Haiech, J., Ellenberg, J., Takeda, K., Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions (2004) J. Biol. Chem., 279, pp. 28715-28723
  • Grossman, E., Messerli, F.H., Calcium antagonists (2004) Prog. Cardiovasc. Dis., 47, pp. 34-57
  • Hamdollah Zadeh, M.A., Glass, C.A., Magnussen, A., Hancox, J.C., Bates, D.O., VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6 (2008) Microcirculation, 15, pp. 605-614
  • Higgins, R., Yu, K., Sanders, R., Nandgaonkar, B., Rotschild, T., Rifkin, D., Diltiazem reduces retinal neovascularization in a mouse model of oxygen induced retinopathy (1999) Curr. Eye Res., 18, pp. 20-27
  • Jaquet, K., Krause, K., Tawakol-Khodai, M., Geidel, S., Kuck, K.H., Erythropoietin and VEGF exhibit equal angiogenic potential (2002) Microvasc. Res., 64, pp. 326-333
  • Juárez, C.P., Muiño, J.C., Guglielmone, H., Sambuelli, R., Echenique, J.R., Hernández, M., Luna, J.D., Experimental retinopathy of prematurity: angiostatic inhibition by nimodipine, ginkgo-biloba, and dipyridamole, and response to different growth factors (2000) Eur. J. Ophthalmol., 10, pp. 51-59
  • Kertesz, N., Wu, J., Chen, T.H.P., Sucov, H.M., Wu, H., The role of erythropoietin in regulating angiogenesis (2004) Dev. Biol., 276, pp. 101-110
  • Kumamoto, H., Okamoto, H., Watanabe, M., Onozuka, H., Yoneya, K., Nakagawa, I., Chiba, S., Kitabatake, A., Beneficial effect of myocardial angiogenesis on cardiac remodeling process by amlodipine and MCI-154 (1999) Am. J. Physiol. Heart Circ. Physiol., 276, pp. 1117-1123
  • Ledoux, J., Werner, M.E., Brayden, J.E., Nelson, M.T., Calcium-activated potassium channels and the regulation of vascular tone (2006) Physiology, 21, pp. 69-78
  • Lee, J., Ishihara, A., Oxford, G., Johnson, B., Jaconson, K., Regulation of cell movement is mediated by stretch-activated calcium channels (1999) Nature, 400, pp. 382-386
  • Mak, I.T., Boehme, P., Weglicki, W.B., Antioxidant effects of calcium channel blockers against Free radical injury in endothelial cells correlation of protection with preservation of glutathione levels (1992) Circ. Res., 70, pp. 1099-1103
  • Maltaneri, R.E., Chamorro, M.E., Schiappacasse, A., Nesse, A.B., Vittori, D.C., Differential effect of erythropoietin and carbamylated erythropoietin on endothelial cell migration (2017) Int. J. Biochem. Cell Biol., 85, pp. 25-34
  • Mason, R.P., Walter, M.F., Trumbore, M.W., Olmstead, E.G., Jr., Mason, P.E., Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine (1999) J. Mol. Cell. Cardiol., 31, pp. 275-281
  • Miura, S.I., Fujino, M., Matsuo, Y., Tanigawa, H., Saku, K., Nifedipine-induced vascular endothelial growth factor secretion from coronary smooth muscle cells promotes endothelial tube formation via the kinase insert domain-containing receptor/fetal liver kinase-1/NO pathway (2005) Hypertens. Res., 28, pp. 147-153
  • Nilius, B., Droogmans, G., Ion channels and their functional role in vascular endothelium (2001) Physiol. Rev., 81, pp. 1415-1459
  • Nilius, B., Schwartz, G., Oike, M., Droogmans, G., Histamine-activated, non-selective cation currents and Ca2+ transients in endothelial cells from human umbilical vein (1993) Pflugers Arch., 424, pp. 285-293
  • Nishizawa, T., Cheng, X.W., Jin, Z., Obata, K., Nagata, K., Hirashiki, A., Sasaki, T., Murohara, T., Ca2+ channel blocker benidipine promotes coronary angiogenesis and reduces both left-ventricular diastolic stiffness and mortality in hypertensive rats (2010) J. Hypertens., 28, pp. 1515-1526
  • Ribatti, D., Presta, M., Vacca, A., Ria, R., Giuliani, R., Dell'Era, P., Nico, B., Dammacco, F., Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo (1999) Blood, 93, pp. 2627-2636
  • Sautina, L., Sautin, Y., Beem, E., Zhou, Z., Schuler, A., Brennan, J., Zharikov, S.I., Segal, M.S., Induction of nitric oxide by erythropoietin is mediated by the β common receptor and requires interaction with VEGF receptor 2 (2010) Blood, 115, pp. 896-905
  • Shu, Q., Amin, M.A., Ruth, J.H., Campbell, P.L., Koch, A.E., Suppression of endothelial cell activity by inhibition of TNFα (2012) Arthritis Res. Ther., 14, p. R88
  • Taoufik, E., Petit, E., Divoux, D., Tseveleki, V., Mengozzi, M., Roberts, M.L., Cerami, A., TNF receptor I sensitizes neurons to erythropoietin-and VEGF-mediated neuroprotection after ischemic and excitotoxic injury (2008) Proc. Nat. Acad. Sci. U. S. A., 105, pp. 6185-6190
  • Toma, L., Stancu, C.S., Sanda, G.M., Sima, A.V., Anti-oxidant and anti-inflammatory mechanisms of amlodipine action to improve endothelial cell dysfunction induced by irreversibly glycated LDL (2011) Biochem. Biophys. Res. Commun., 411, pp. 202-207
  • Tong, Q., Hirschler-Laszkiewicz, I., Zhang, W., Conrad, K., Neagley, D.W., Barber, D.L., Cheung, J.Y., Miller, B.A., TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells (2008) J. Biol. Chem., 283, pp. 10385-10395
  • Tsai, F.C., Kuo, G.H., Chang, S.W., Tsai, P.J., Ca2+ signaling in cytoskeletal reorganization, cell migration and cancer metastasis (2015) Biomed. Res. Int.
  • Vinet, R., Vargas, F.F., L- and T-type voltage-gated Ca21 currents in adrenal medulla endothelial cells (1999) Am. J. Physiol. Heart Circ. Physiol., 276, pp. H1313-H1322
  • Vogel, V., Kramer, H.J., Bäcker, A., Meyer-Lehnert, H., Jelkmann, W., Fandrey, J., Effects of erythropoietin on endothelin-1 synthesis and the cellular calcium messenger system in vascular endothelial cells (1997) Am. J. Hypertens., 10, pp. 289-296
  • Wada, Y., Okamoto, K., Izumaru, S., Diltiazem, a calcium antagonist, inhibits matrix metalloproteinase-1 (tissue collagenase) production and collagenolytic activity in human vascular smooth muscle cells (2001) Int. J. Mol. Med., 8, pp. 561-566
  • Walrafen, P., Verdier, F., Kadri, Z., Chrétien, S., Lacombe, C., Mayeux, P., Both proteasomes and lysosomes degrade the activated erythropoietin receptor (2005) Blood, 105, pp. 600-608
  • Wang, L., Chopp, M., Teng, H., Bolz, M., Francisco, M.A., Aluigi, D.M., Wang, X.L., Tumor necrosis factor α primes cerebral endothelial cells for erythropoietin-induced angiogenesis (2011) J. Cereb. Blood Flow Metab., 31, pp. 640-647
  • Yakubu, M.A., Leffler, C.W., L-type voltage-dependent Ca2+ channels in cerebral microvascular endothelial cells and ET-1 biosynthesis (2002) Am. J. Physiol. Cell Physiol., 283, pp. C1687-C1695
  • Yang, H., Korivi, M., Lin, M., Chen, S., Chou, C., Hseu, Y.C., Anti-angiogenic properties of coenzyme Q 0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells (2015) Biochem. Pharmacol., 98, pp. 144-156
  • Yu, Y.B., Su, K.H., Kou, Y.R., Guo, B.C., Lee, K.I., Role of transient receptor potential vanilloid 1 in regulating erythropoietin-induced activation of endothelial nitric oxide synthase (2017) Acta Physiol., 219, pp. 465-477
  • Yue, H., Uzui, H., Shimizu, H., Nakano, A., Mitsuke, Y., Ueda, T., Lee, J.D., Different effects of calcium channel blockers on matrix metalloproteinase-2 expression in cultured rat cardiac fibroblasts (2004) J. Cardiovasc. Pharmacol., 44, pp. 223-230


---------- APA ----------
Maltaneri, R.E., Schiappacasse, A., Chamorro, M.E., Nesse, A.B. & Vittori, D.C. (2018) . Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration. European Journal of Cell Biology, 97(6), 411-421.
---------- CHICAGO ----------
Maltaneri, R.E., Schiappacasse, A., Chamorro, M.E., Nesse, A.B., Vittori, D.C. "Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration" . European Journal of Cell Biology 97, no. 6 (2018) : 411-421.
---------- MLA ----------
Maltaneri, R.E., Schiappacasse, A., Chamorro, M.E., Nesse, A.B., Vittori, D.C. "Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration" . European Journal of Cell Biology, vol. 97, no. 6, 2018, pp. 411-421.
---------- VANCOUVER ----------
Maltaneri, R.E., Schiappacasse, A., Chamorro, M.E., Nesse, A.B., Vittori, D.C. Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration. Eur. J. Cell Biol. 2018;97(6):411-421.