Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In contrast to mechanisms taking place during resistance to chemotherapies or other targeted therapies, compensatory adaptation to angiogenesis blockade does not imply a mutational alteration of genes encoding drug targets or multidrug resistance mechanisms but instead involves intrinsic or acquired activation of compensatory angiogenic pathways. In this article we highlight hypoxia-regulated and immune-mediated mechanisms that converge in endothelial cell programs and preserve angiogenesis in settings of vascular endothelial growth factor (VEGF) blockade. These mechanisms involve mobilization of myeloid cell populations and activation of cytokine- and chemokine-driven circuits operating during intrinsic and acquired resistance to anti-angiogenic therapies. Particularly, we focus on findings underscoring a role for galectins and glycosylated ligands in promoting resistance to anti-VEGF therapies and discuss possible strategies to overcome or attenuate this compensatory pathway. Finally, we highlight emerging evidence demonstrating the interplay between immunosuppressive and pro-angiogenic programs in the tumor microenvironment (TME) and discuss emerging combinatorial anticancer strategies aimed at simultaneously potentiating antitumor immune responses and counteracting aberrant angiogenesis. © Springer International Publishing AG 2017.

Registro:

Documento: Artículo
Título:Immune-mediated and hypoxia-regulated programs: Accomplices in resistance to anti-angiogenic therapies
Autor:Croci, D.O.; Mendez-Huergo, S.P.; Cerliani, J.P.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1428, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Angiogenesis; Anti-angiogenic therapy; Galectins; Hypoxia; Immunotherapy; Resistance
Año:2018
Volumen:249
Página de inicio:31
Página de fin:61
DOI: http://dx.doi.org/10.1007/164_2017_29
Título revista:Handbook of Experimental Pharmacology
Título revista abreviado:Handb. Exp. Pharmacol.
ISSN:01712004
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01712004_v249_n_p31_Croci

Referencias:

  • Arrondeau, J., Huillard, O., Tlemsani, C., Cessot, A., Boudou-Rouquette, P., Blanchet, B., Thomas-Schoemann, A., Goldwasser, F., Investiga-tional therapies up to phase II which target PDGF receptors: Potential anti-cancer therapeutics (2015) Expert Opin Investig Drugs, 24 (5), pp. 673-687
  • Barbi, J., Pardoll, D., Pan, F., Metabolic control of the Treg/Th17 axis (2013) Immunol Rev, 252 (1), pp. 52-77
  • Batchelor, T.T., Sorensen, A.G., Di Tomaso, E., Zhang, W.T., Duda, D.G., Cohen, K.S., Kozak, K.R., Jain, R.K., AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients (2007) Cancer Cell, 11 (1), pp. 83-95
  • Bergers, G., Hanahan, D., Modes of resistance to anti-angiogenic therapy (2008) Nat Rev Cancer, 8 (8), pp. 592-603
  • Birbrair, A., Zhang, T., Wang, Z.M., Messi, M.L., Enikolopov, G.N., Mintz, A., Delbono, O., Skeletal muscle pericyte subtypes differ in their differentiation potential (2013) Stem Cell Res, 10 (1), pp. 67-84
  • Bose, A., Barik, S., Banerjee, S., Ghosh, T., Mallick, A., Bhattacharyya Majumdar, S., Goswami, K.K., Majumdar, S., Tumor-derived vascular pericytes anergize Th cells (2013) J Immunol, 191 (2), pp. 971-981
  • Bourbie-Vaudaine, S., Blanchard, N., Hivroz, C., Romeo, P.H., Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer (2006) J Immunol, 177 (3), pp. 1460-1469
  • Brecht, K., Weigert, A., Hu, J., Popp, R., Fisslthaler, B., Korff, T., Fleming, I., Brune, B., Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2 (2011) FASEB J, 25 (7), pp. 2408-2417
  • Bruno, A., Focaccetti, C., Pagani, A., Imperatori, A.S., Spagnoletti, M., Rotolo, N., Cantelmo, A.R., Noonan, D.M., The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer (2013) Neoplasia, 15 (2), pp. 133-142
  • Burke, B., Tang, N., Corke, K.P., Tazzyman, D., Ameri, K., Wells, M., Lewis, C.E., Expression of HIF-1alpha by human macrophages: Implications for the use of macrophages in hypoxia-regulated cancer gene therapy (2002) J Pathol, 196 (2), pp. 204-212
  • Carbone, C., Tamburrino, A., Piro, G., Boschi, F., Cataldo, I., Zanotto, M., Mina, M.M., Melisi, D., Combined inhibition of IL1, CXCR1/2, and TGFbeta signaling pathways modulates in-vivo resistance to anti-VEGF treatment (2016) Anti-Cancer Drugs, 27 (1), pp. 29-40
  • Carlini, M.J., Roitman, P., Nunez, M., Pallotta, M.G., Boggio, G., Smith, D., Salatino, M., Puricelli, L.I., Clinical relevance of galectin-1 expression in non-small cell lung cancer patients (2014) Lung Cancer, 84 (1), pp. 73-78
  • Carmeliet, P., Jain, R.K., Angiogenesis in cancer and other diseases (2000) Nature, 407 (6801), pp. 249-257
  • Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis (2011) Nature, 473 (7347), pp. 298-307
  • Casanovas, O., Hicklin, D.J., Bergers, G., Hanahan, D., Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors (2005) Cancer Cell, 8 (4), pp. 299-309
  • Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O., Rabinovich, G.A., Translating the ‘sugar code’ into immune and vascular signaling programs (2016) Trends Biochem Sci
  • Chan, D.A., Kawahara, T.L., Sutphin, P.D., Chang, H.Y., Chi, J.T., Giaccia, A.J., Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment (2009) Cancer Cell, 15 (6), pp. 527-538
  • Chandler, K.B., Leon, D.R., Meyer, R.D., Rahimi, N., Costello, C.E., Site-specific N-glycosylation of endothelial cell receptor tyrosine kinase VEGFR-2 (2017) J Proteome Res, 16 (2), pp. 677-688
  • Chen, C., Duckworth, C.A., Fu, B., Pritchard, D.M., Rhodes, J.M., Yu, L.G., Circulating galectins-2,-4 and-8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis (2014) Br J Cancer, 110 (3), pp. 741-752
  • Chen, W.S., Cao, Z., Sugaya, S., Lopez, M.J., Sendra, V.G., Laver, N., Leffler, H., Panjwani, N., Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3 (2016) Nat Commun, 7
  • Chouaib, S., Messai, Y., Couve, S., Escudier, B., Hasmim, M., Noman, M.Z., Hypoxia promotes tumor growth in linking angiogenesis to immune escape (2012) Front Immunol, 3
  • Chung, A.S., Wu, X., Zhuang, G., Ngu, H., Kasman, I., Zhang, J., Vernes, J.M., Ferrara, N., An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy (2013) Nat Med, 19 (9), pp. 1114-1123
  • Colegio, O.R., Chu, N.Q., Szabo, A.L., Chu, T., Rhebergen, A.M., Jairam, V., Cyrus, N., Medzhitov, R., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid (2014) Nature, 513 (7519), pp. 559-563
  • Cooke, V.G., Lebleu, V.S., Keskin, D., Khan, Z., O’Connell, J.T., Teng, Y., Duncan, M.B., Kalluri, R., Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway (2012) Cancer Cell, 21 (1), pp. 66-81
  • Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Gabrilovich, D.I., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment (2010) J Exp Med, 207 (11), pp. 2439-2453
  • Coussens, L.M., Raymond, W.W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., Caughey, G.H., Hanahan, D., Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis (1999) Genes Dev, 13 (11), pp. 1382-1397
  • Coussens, L.M., Zitvogel, L., Palucka, A.K., Neutralizing tumor-promoting chronic inflammation: A magic bullet? (2013) Science, 339 (6117), pp. 286-291
  • Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Rabinovich, G.A., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma (2012) J Exp Med, 209 (11), pp. 1985-2000
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Rabinovich, G.A., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156 (4), pp. 744-758
  • Croci, D.O., Cerliani, J.P., Pinto, N.A., Morosi, L.G., Rabinovich, G.A., Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment (2014) Glycobiology, 24 (12), pp. 1283-1290
  • Curiel, T.J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, W., Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer (2004) Cancer Res, 64 (16), pp. 5535-5538
  • D’Alessio, F.R., Zhong, Q., Jenkins, J., Moldobaeva, A., Wagner, E.M., Lung angiogenesis requires CD4(+) forkhead homeobox protein-3(+) regulatory T cells (2015) Am J Respir Cell Mol Biol, 52 (5), pp. 603-610
  • D’Haene, N., Sauvage, S., Maris, C., Adanja, I., Le Mercier, M., Decaestecker, C., Baum, L., Salmon, I., VEGFR1 and VEGFR2 involvement in extracellular galectin-1-and galectin-3-induced angiogenesis (2013) Plos One, 8 (6)
  • Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Pan, F., Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1 (2011) Cell, 146 (5), pp. 772-784
  • de Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., Naldini, L., Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors (2005) Cancer Cell, 8 (3), pp. 211-226
  • Delgado, V.M., Nugnes, L.G., Colombo, L.L., Troncoso, M.F., Fernandez, M.M., Malchiodi, E.L., Frahm, I., Elola, M.T., Modulation of endothelial cell migration and angiogenesis: A novel function for the “tandem-repeat” lectin galectin-8 (2011) FASEB J, 25 (1), pp. 242-254
  • Deng, B., Zhu, J.M., Wang, Y., Liu, T.T., Ding, Y.B., Xiao, W.M., Lu, G.T., Shen, X.Z., Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-beta1 in gastric cancer (2013) Plos One, 8 (5)
  • Dikov, M.M., Ohm, J.E., Ray, N., Tchekneva, E.E., Burlison, J., Moghanaki, D., Nadaf, S., Carbone, D.P., Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation (2005) J Immunol, 174 (1), pp. 215-222
  • Dings, R.P., Loren, M., Heun, H., McNiel, E., Griffioen, A.W., Mayo, K.H., Griffin, R.J., Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization (2007) Clin Cancer Res, 13 (11), pp. 3395-3402
  • Dobbelstein, M., Moll, U., Targeting tumour-supportive cellular machineries in anticancer drug development (2014) Nat Rev Drug Discov, 13 (3), pp. 179-196
  • Ebos, J.M., Lee, C.R., Cruz-Munoz, W., Bjarnason, G.A., Christensen, J.G., Kerbel, R.S., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis (2009) Cancer Cell, 15 (3), pp. 232-239
  • Ellis, L.M., Hicklin, D.J., Pathways mediating resistance to vascular endothelial growth factor-targeted therapy (2008) Clin Cancer Res, 14 (20), pp. 6371-6375
  • Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Coukos, G., Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(Reg) cells (2011) Nature, 475 (7355), pp. 226-230
  • Fagiani, E., Bill, R., Pisarsky, L., Ivanek, R., Ruegg, C., Christofori, G., An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models (2015) Angiogenesis, 18 (3), pp. 327-345
  • Ferrara, N., Adamis, A.P., Ten years of anti-vascular endothelial growth factor therapy (2016) Nat Rev Drug Discov, 15 (6), pp. 385-403
  • Ferrara, N., Hillan, K.J., Novotny, W., Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy (2005) Biochem Biophys Res Commun, 333 (2), pp. 328-335
  • Finke, J., Ko, J., Rini, B., Rayman, P., Ireland, J., Cohen, P., MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy (2011) Int Immunopharmacol, 11 (7), pp. 856-861
  • Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., Chorianopoulos, E., Carmeliet, P., Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels (2007) Cell, 131 (3), pp. 463-475
  • Folkman, J., Tumor angiogenesis: Therapeutic implications (1971) N Engl J Med, 285 (21), pp. 1182-1186
  • Forget, M.A., Voorhees, J.L., Cole, S.L., Dakhlallah, D., Patterson, I.L., Gross, A.C., Moldovan, L., Eubank, T.D., Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer (2014) Plos One, 9 (6)
  • Freeman, M.R., Schneck, F.X., Gagnon, M.L., Corless, C., Soker, S., Niknejad, K., Peoples, G.E., Klagsbrun, M., Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: A potential role for T cells in angiogenesis (1995) Cancer Res, 55 (18), pp. 4140-4145
  • Gabrilovich, D.I., Chen, H.L., Girgis, K.R., Cunningham, H.T., Meny, G.M., Nadaf, S., Kavanaugh, D., Carbone, D.P., Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells (1996) Nat Med, 2 (10), pp. 1096-1103
  • Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., Carbone, D.P., Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo (1998) Blood, 92 (11), pp. 4150-4166
  • Gabrilovich, D.I., Ishida, T., Nadaf, S., Ohm, J.E., Carbone, D.P., Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function (1999) Clin Cancer Res, 5 (10), pp. 2963-2970
  • Gabrilovich, D.I., Ostrand-Rosenberg, S., Bronte, V., Coordinated regulation of myeloid cells by tumours (2012) Nat Rev Immunol, 12 (4), pp. 253-268
  • Garber, K., Promising early results for immunotherapy-antiangiogenesis combination (2014) J Natl Cancer Inst, 106 (11)
  • Garin, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells (2007) Blood, 109 (5), pp. 2058-2065
  • Gasparri, M.L., Bellati, F., Napoletano, C., Panici, P.B., Nuti, M., Interaction between Treg cells and angiogenesis: A dark double track (2013) Int J Cancer, 132 (10), p. 2469
  • Ge, X.N., Ha, S.G., Greenberg, Y.G., Rao, A., Bastan, I., Blidner, A.G., Rao, S.P., Sriramarao, P., Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1 (2016) Proc Natl Acad Sci U S A, 113 (33), pp. E4837-E4846
  • Giatromanolaki, A., Bates, G.J., Koukourakis, M.I., Sivridis, E., Gatter, K.C., Harris, A.L., Banham, A.H., The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer (2008) Gynecol Oncol, 110 (2), pp. 216-221
  • Gotthardt, D., Putz, E.M., Grundschober, E., Prchal-Murphy, M., Straka, E., Kudweis, P., Heller, G., Sexl, V., STAT5 Is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion (2016) Cancer Discov, 6 (4), pp. 414-429
  • Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Jung, S., Chimenti, S., Keshet, E., VEGF-induced adult neovascularization: Recruitment, retention, and role of accessory cells (2006) Cell, 124 (1), pp. 175-189
  • Gupta, S., Joshi, K., Wig, J.D., Arora, S.K., Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis (2007) Acta Oncol, 46 (6), pp. 792-797
  • Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H.H., Rabie, T., Ganss, R., Vascular normalization in Rgs5-deficient tumours promotes immune destruction (2008) Nature, 453 (7193), pp. 410-414
  • Hanahan, D., Coussens, L.M., Accessories to the crime: Functions of cells recruited to the tumor microenvironment (2012) Cancer Cell, 21 (3), pp. 309-322
  • Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Mandelboim, O., Decidual NK cells regulate key developmental processes at the human fetal-maternal interface (2006) Nat Med, 12 (9), pp. 1065-1074
  • Hansen, W., Hutzler, M., Abel, S., Alter, C., Stockmann, C., Kliche, S., Albert, J., Helfrich, I., Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth (2012) J Exp Med, 209 (11), pp. 2001-2016
  • Heddleston, J.M., Li, Z., Lathia, J.D., Bao, S., Hjelmeland, A.B., Rich, J.N., Hypoxia inducible factors in cancer stem cells (2010) Br J Cancer, 102 (5), pp. 789-795
  • Heusschen, R., Schulkens, I.A., van Beijnum, J., Griffioen, A.W., Thijssen, V.L., Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis (2014) Biochim Biophys Acta, 1842 (2), pp. 284-292
  • Hodi, F.S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., Zeng, W., McDermott, D., Bevacizumab plus ipilimumab in patients with metastatic melanoma (2014) Cancer Immunol Res, 2 (7), pp. 632-642
  • Holash, J., Davis, S., Papadopoulos, N., Croll, S.D., Ho, L., Russell, M., Boland, P., Rudge, J.S., VEGF-Trap: A VEGF blocker with potent antitumor effects (2002) Proc Natl Acad Sci U S A, 99 (17), pp. 11393-11398
  • Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Jin, Y.T., Chen, Y.L., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27 (26), pp. 3746-3753
  • Huang, Y., Yuan, J., Righi, E., Kamoun, W.S., Ancukiewicz, M., Nezivar, J., Santosuosso, M., Poznansky, M.C., Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy (2012) Proc Natl Acad Sci U S A, 109 (43), pp. 17561-17566
  • Huang, Y., Goel, S., Duda, D.G., Fukumura, D., Jain, R.K., Vascular normalization as an emerging strategy to enhance cancer immunotherapy (2013) Cancer Res, 73 (10), pp. 2943-2948
  • Hughes, P.E., Caenepeel, S., Wu, L.C., Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer (2016) Trends Immunol, 37 (7), pp. 462-476
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10 (9), pp. 981-991
  • Jain, R.K., Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy (2005) Science, 307 (5706), pp. 58-62
  • Jain, R.K., Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia (2014) Cancer Cell, 26 (5), pp. 605-622
  • Jeong, W., Doroshow, J.H., Kummar, S., United States Food and Drug Administration approved oral kinase inhibitors for the treatment of malignancies (2013) Curr Probl Cancer, 37 (3), pp. 110-144
  • Jetten, N., Verbruggen, S., Gijbels, M.J., Post, M.J., de Winther, M.P., Donners, M.M., Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo (2014) Angiogenesis, 17 (1), pp. 109-118
  • Ju, J.A., Godet, I., Ye, I.C., Byun, J., Jayatilaka, H., Lee, S.J., Xiang, L., Gilkes, D.M., Hypoxia selectively enhances integrin receptor expression to promote metastasis (2017) Mol Cancer Res
  • Junttila, M.R., de Sauvage, F.J., Influence of tumour micro-environment heterogeneity on therapeutic response (2013) Nature, 501 (7467), pp. 346-354
  • Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Shipp, M.A., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc Natl Acad Sci U S A, 104 (32), pp. 13134-13139
  • Kale, S., Hanai, J., Chan, B., Karihaloo, A., Grotendorst, G., Cantley, L., Sukhatme, V.P., Microarray analysis of in vitro pericyte differentiation reveals an angiogenic program of gene expression (2005) FASEB J, 19 (2), pp. 270-271
  • Keith, B., Johnson, R.S., Simon, M.C., HIF1alpha and HIF2alpha: Sibling rivalry in hypoxic tumour growth and progression (2011) Nat Rev Cancer, 12 (1), pp. 9-22
  • Kitamura, T., Qian, B.Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., Kato, Y., Pollard, J.W., CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages (2015) J Exp Med, 212 (7), pp. 1043-1059
  • Knighton, D.R., Hunt, T.K., Scheuenstuhl, H., Halliday, B.J., Werb, Z., Banda, M.J., Oxygen tension regulates the expression of angiogenesis factor by macrophages (1983) Science, 221 (4617), pp. 1283-1285
  • Kouo, T., Huang, L., Pucsek, A.B., Cao, M., Solt, S., Armstrong, T., Jaffee, E., Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells (2015) Cancer Immunol Res, 3 (4), pp. 412-423
  • Krupitskaya, Y., Wakelee, H.A., Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer (2009) Curr Opin Investig Drugs, 10 (6), pp. 597-605
  • Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., Yu, H., Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice (2008) J Clin Invest, 118 (10), pp. 3367-3377
  • Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., Al Nakouzi, N., Rabinovich, G.A., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res, 73 (1), pp. 86-96
  • Lagory, E.L., Giaccia, A.J., The ever-expanding role of HIF in tumour and stromal biology (2016) Nat Cell Biol, 18 (4), pp. 356-365
  • Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation (2007) Cell, 129 (1), pp. 123-134
  • Le, Q.T., Shi, G., Cao, H., Nelson, D.W., Wang, Y., Chen, E.Y., Zhao, S., Koong, A.C., Galectin-1: A link between tumor hypoxia and tumor immune privilege (2005) J Clin Oncol, 23 (35), pp. 8932-8941
  • Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., Vascular endothelial growth factor is a secreted angiogenic mitogen (1989) Science, 246 (4935), pp. 1306-1309
  • Lewis, C.E., Pollard, J.W., Distinct role of macrophages in different tumor microenvironments (2006) Cancer Res, 66 (2), pp. 605-612
  • Lin, E.Y., Li, J.F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D.A., Qian, H., Pollard, J.W., Macrophages regulate the angiogenic switch in a mouse model of breast cancer (2006) Cancer Res, 66 (23), pp. 11238-11246
  • Liu, F.T., Rabinovich, G.A., Galectins as modulators of tumour progression (2005) Nat Rev Cancer, 5 (1), pp. 29-41
  • Liu, X.D., Hoang, A., Zhou, L., Kalra, S., Yetil, A., Sun, M., Ding, Z., Jonasch, E., Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma (2015) Cancer Immunol Res, 3 (9), pp. 1017-1029
  • Loges, S., Mazzone, M., Hohensinner, P., Carmeliet, P., Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited (2009) Cancer Cell, 15 (3), pp. 167-170
  • Lukashev, D., Klebanov, B., Kojima, H., Grinberg, A., Ohta, A., Berenfeld, L., Wenger, R.H., Sitkovsky, M., Cutting edge: Hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes (2006) J Immunol, 177 (8), pp. 4962-4965
  • Luo, W., Song, L., Chen, X.L., Zeng, X.F., Wu, J.Z., Zhu, C.R., Huang, T., Wu, X.P., Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells (2016) Oncotarget, 7 (18), pp. 26709-26723
  • Lykken, J.M., Horikawa, M., Minard-Colin, V., Kamata, M., Miyagaki, T., Poe, J.C., Tedder, T.F., Galectin-1 drives lymphoma CD20 immunotherapy resistance: Validation of a preclinical system to identify resistance mechanisms (2016) Blood, 127 (15), pp. 1886-1895
  • Machado, C.M., Andrade, L.N., Teixeira, V.R., Costa, F.F., Melo, C.M., Dos Santos, S.N., Nonogaki, S., Chammas, R., Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFbeta1-induced macrophages (2014) Cancer Med, 3 (2), pp. 201-214
  • Mamessier, E., Sylvain, A., Thibult, M.L., Houvenaeghel, G., Jacquemier, J., Castellano, R., Goncalves, A., Olive, D., Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity (2011) J Clin Invest, 121 (9), pp. 3609-3622
  • Manegold, C., Dingemans, A.C., Gray, J.E., Nakagawa, K., Nicolson, M., Peters, S., Reck, M., Vokes, E., The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC (2017) J Thorac Oncol, 12 (2), pp. 194-207
  • Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., Allavena, P., Tumour-associated macrophages as treatment targets in oncology (2017) Nat Rev Clin Oncol
  • Manzi, M., Bacigalupo, M.L., Carabias, P., Elola, M.T., Wolfenstein-Todel, C., Rabinovich, G.A., Espelt, M.V., Troncoso, M.F., Galectin-1 controls the proliferation and migration of liver sinusoidal endothelial cells and their interaction with hepatocarcinoma cells (2016) J Cell Physiol, 231 (7), pp. 1522-1533
  • Markowska, A.I., Liu, F.T., Panjwani, N., Galectin-3 is an important mediator of VEGF-and bFGF-mediated angiogenic response (2010) J Exp Med, 207 (9), pp. 1981-1993
  • Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J Biol Chem, 286 (34), pp. 29913-29921
  • Marone, G., Varricchi, G., Loffredo, S., Granata, F., Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis (2016) Eur J Pharmacol, 778, pp. 146-151
  • Martinez-Bosch, N., Fernandez-Barrena, M.G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Navarro, P., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation (2014) Cancer Res, 74 (13), pp. 3512-3524
  • Mathieu, V., de Lassalle, E.M., Toelen, J., Mohr, T., Bellahcene, A., van Goietsenoven, G., Verschuere, T., Feron, O., Galectin-1 in melanoma biology and related neo-angiogenesis processes (2012) J Invest Dermatol, 132 (9), pp. 2245-2254
  • Melero, I., Berman, D.M., Aznar, M.A., Korman, A.J., Perez Gracia, J.L., Haanen, J., Evolving synergistic combinations of targeted immunotherapies to combat cancer (2015) Nat Rev Cancer, 15 (8), pp. 457-472
  • Mendez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A., Galectins: Emerging regulatory checkpoints linking tumor immunity and angiogenesis (2017) Curr Opin Immunol, 45, pp. 8-15
  • Mimura, K., Kono, K., Takahashi, A., Kawaguchi, Y., Fujii, H., Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2 (2007) Cancer Immunol Immunother, 56 (6), pp. 761-770
  • Mizukami, Y., Jo, W.S., Duerr, E.M., Gala, M., Li, J., Zhang, X., Zimmer, M.A., Chung, D.C., Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells (2005) Nat Med, 11 (9), pp. 992-997
  • Mosser, D.M., Edwards, J.P., Exploring the full spectrum of macrophage activation (2008) Nat Rev Immunol, 8 (12), pp. 958-969
  • Motz, G.T., Coukos, G., The parallel lives of angiogenesis and immunosuppression: Cancer and other tales (2011) Nat Rev Immunol, 11 (10), pp. 702-711
  • Motz, G.T., Coukos, G., Deciphering and reversing tumor immune suppression (2013) Immunity, 39 (1), pp. 61-73
  • Murdoch, C., Giannoudis, A., Lewis, C.E., Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues (2004) Blood, 104 (8), pp. 2224-2234
  • Murdoch, C., Muthana, M., Coffelt, S.B., Lewis, C.E., The role of myeloid cells in the promotion of tumour angiogenesis (2008) Nat Rev Cancer, 8 (8), pp. 618-631
  • Myszczyszyn, A., Czarnecka, A.M., Matak, D., Szymanski, L., Lian, F., Kornakiewicz, A., Bartnik, E., Szczylik, C., The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis (2015) Stem Cell Rev, 11 (6), pp. 919-943
  • Nabi, I.R., Shankar, J., Dennis, J.W., The galectin lattice at a glance (2015) J Cell Sci, 128 (13), pp. 2213-2219
  • Nangia-Makker, P., Honjo, Y., Sarvis, R., Akahani, S., Hogan, V., Pienta, K.J., Raz, A., Galectin-3 induces endothelial cell morphogenesis and angiogenesis (2000) Am J Pathol, 156 (3), pp. 899-909
  • Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., Chouaib, S., PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation (2014) J Exp Med, 211 (5), pp. 781-790
  • Noy, R., Pollard, J.W., Tumor-associated macrophages: From mechanisms to therapy (2014) Immunity, 41 (1), pp. 49-61
  • Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., Hurwitz, H.I., Morse, M.A., The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients (2008) Cancer Immunol Immunother, 57 (8), pp. 1115-1124
  • Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Casanovas, O., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis (2009) Cancer Cell, 15 (3), pp. 220-231
  • Pan, F., Barbi, J., Pardoll, D.M., Hypoxia-inducible factor 1: A link between metabolism and T cell differentiation and a potential therapeutic target (2012) Oncoimmunology, 1 (4), pp. 510-515
  • Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy (2012) Nat Rev Cancer, 12 (4), pp. 252-264
  • Piao, Y., Liang, J., Holmes, L., Zurita, A.J., Henry, V., Heymach, J.V., de Groot, J.F., Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype (2012) Neuro-Oncology, 14 (11), pp. 1379-1392
  • Piccolo, E., Tinari, N., Semeraro, D., Traini, S., Fichera, I., Cumashi, A., la Sorda, R., Iacobelli, S., LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis (2013) J Mol Med (Berlin), 91 (1), pp. 83-94
  • Platonova, S., Cherfils-Vicini, J., Damotte, D., Crozet, L., Vieillard, V., Validire, P., Andre, P., Cremer, I., Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma (2011) Cancer Res, 71 (16), pp. 5412-5422
  • Potente, M., Gerhardt, H., Carmeliet, P., Basic and therapeutic aspects of angiogenesis (2011) Cell, 146 (6), pp. 873-887
  • Priceman, S.J., Sung, J.L., Shaposhnik, Z., Burton, J.B., Torres-Collado, A.X., Moughon, D.L., Johnson, M., Wu, L., Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: Combating tumor evasion of antiangiogenic therapy (2010) Blood, 115 (7), pp. 1461-1471
  • Quail, D.F., Joyce, J.A., Microenvironmental regulation of tumor progression and metastasis (2013) Nat Med, 19 (11), pp. 1423-1437
  • Rabinovich, G.A., Conejo-Garcia, J.R., Shaping the immune landscape in cancer by galectin-driven regulatory pathways (2016) J Mol Biol, 428 (16), pp. 3266-3281
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36 (3), pp. 322-335
  • Rabinovich, G., Castagna, L., Landa, C., Riera, C.M., Sotomayor, C., Regulated expression of a 16-kd galectin-like protein in activated rat macrophages (1996) J Leukoc Biol, 59 (3), pp. 363-370
  • Rabinovich, G.A., Gabrilovich, D., Sotomayor, E.M., Immunosuppressive strategies that are mediated by tumor cells (2007) Annu Rev Immunol, 25, pp. 267-296
  • Rangachari, M., Zhu, C., Sakuishi, K., Xiao, S., Karman, J., Chen, A., Angin, M., Kuchroo, V.K., Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion (2012) Nat Med, 18 (9), pp. 1394-1400
  • Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Squadrito, M.L., Carmeliet, P., HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF (2011) Cancer Cell, 19 (1), pp. 31-44
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5 (3), pp. 241-251
  • Rutkowski, M.R., Stephen, T.L., Svoronos, N., Allegrezza, M.J., Tesone, A.J., Perales-Puchalt, A., Brencicova, E., Conejo-Garcia, J.R., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell, 27 (1), pp. 27-40
  • Sato, S., Nieminen, J., Seeing strangers or announcing “danger”: Galectin-3 in two models of innate immunity (2004) Glycoconj J, 19 (7-9), pp. 583-591
  • Semenza, G.L., Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype (2017) EMBO J, 36 (3), pp. 252-259
  • Sharma, P., Hu-Lieskovan, S., Wargo, J.A., Ribas, A., Primary, adaptive, and acquired resistance to cancer immunotherapy (2017) Cell, 168 (4), pp. 707-723
  • Shehade, H., Acolty, V., Moser, M., Oldenhove, G., Cutting edge: Hypoxia-inducible factor 1 negatively regulates Th1 function (2015) J Immunol, 195 (4), pp. 1372-1376
  • Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., Chi, H., HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells (2011) J Exp Med, 208 (7), pp. 1367-1376
  • Shojaei, F., Wu, X., Malik, A.K., Zhong, C., Baldwin, M.E., Schanz, S., Fuh, G., Ferrara, N., Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells (2007) Nat Biotechnol, 25 (8), pp. 911-920
  • Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X.H., Yao, J., Blanchard, D., Ferrara, N., Bv8 regulates myeloid-cell-dependent tumour angiogenesis (2007) Nature, 450 (7171), pp. 825-831
  • Shojaei, F., Singh, M., Thompson, J.D., Ferrara, N., Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression (2008) Proc Natl Acad Sci U S A, 105 (7), pp. 2640-2645
  • Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., Meng, Y.G., Ferrara, N., G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models (2009) Proc Natl Acad Sci U S A, 106 (16), pp. 6742-6747
  • Shojaei, F., Lee, J.H., Simmons, B.H., Wong, A., Esparza, C.O., Plumlee, P.A., Feng, J., Christensen, J.G., HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors (2010) Cancer Res, 70 (24), pp. 10090-10100
  • Shrestha, B., Hashiguchi, T., Ito, T., Miura, N., Takenouchi, K., Oyama, Y., Kawahara, K., Maruyama, I., B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes (2010) J Immunol, 184 (9), pp. 4819-4826
  • Siveen, K.S., Kuttan, G., Role of macrophages in tumour progression (2009) Immunol Lett, 123 (2), pp. 97-102
  • Song, N., Huang, Y., Shi, H., Yuan, S., Ding, Y., Song, X., Fu, Y., Luo, Y., Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/ CXCR4 axis (2009) Cancer Res, 69 (15), pp. 6057-6064
  • Soucek, L., Lawlor, E.R., Soto, D., Shchors, K., Swigart, L.B., Evan, G.I., Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors (2007) Nat Med, 13 (10), pp. 1211-1218
  • Sozzani, S., Rusnati, M., Riboldi, E., Mitola, S., Presta, M., Dendritic cell-endothelial cell crosstalk in angiogenesis (2007) Trends Immunol, 28 (9), pp. 385-392
  • Stockmann, C., Schadendorf, D., Klose, R., Helfrich, I., The impact of the immune system on tumor: Angiogenesis and vascular remodeling (2014) Front Oncol, 4
  • Tan, C., Cruet-Hennequart, S., Troussard, A., Fazli, L., Costello, P., Sutton, K., Wheeler, J., Dedhar, S., Regulation of tumor angiogenesis by integrin-linked kinase (ILK) (2004) Cancer Cell, 5 (1), pp. 79-90
  • Tang, D., Gao, J., Wang, S., Ye, N., Chong, Y., Huang, Y., Wang, J., Wang, D., Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression (2016) Tumour Biol, 37 (2), pp. 1889-1899
  • von Tell, D., Armulik, A., Betsholtz, C., Pericytes and vascular stability (2006) Exp Cell Res, 312 (5), pp. 623-629
  • Tesone, A.J., Rutkowski, M.R., Brencicova, E., Svoronos, N., Perales-Puchalt, A., Stephen, T.L., Allegrezza, M.J., Conejo-Garcia, J.R., Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells (2016) Cell Rep, 14 (7), pp. 1774-1786
  • Thiemann, S., Baum, L.G., Galectins and immune responses-just how do they do those things they do? (2016) Annu Rev Immunol, 34, pp. 243-264
  • Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Griffioen, A.W., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc Natl Acad Sci U S A, 103 (43), pp. 15975-15980
  • Thijssen, V.L., Barkan, B., Shoji, H., Aries, I.M., Mathieu, V., Deltour, L., Hackeng, T.M., Griffioen, A.W., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res, 70 (15), pp. 6216-6224
  • Thijssen, V.L., Rabinovich, G.A., Griffioen, A.W., Vascular galectins: Regulators of tumor progression and targets for cancer therapy (2013) Cytokine Growth Factor Rev, 24 (6), pp. 547-558
  • Triner, D., Shah, Y.M., Hypoxia-inducible factors: A central link between inflammation and cancer (2016) J Clin Invest, 126 (10), pp. 3689-3698
  • Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousseyn, T., Mathivet, T., de Vleeschouwer, S., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity (2014) Int J Cancer, 134 (4), pp. 873-884
  • Voron, T., Colussi, O., Marcheteau, E., Pernot, S., Nizard, M., Pointet, A.L., Latreche, S., Terme, M., VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors (2015) J Exp Med, 212 (2), pp. 139-148
  • Wallin, J.J., Bendell, J.C., Funke, R., Sznol, M., Korski, K., Jones, S., Hernandez, G., McDermott, D.F., Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma (2016) Nat Commun, 7
  • Wang, F., Lv, P., Gu, Y., Li, L., Ge, X., Guo, G., Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway (2017) Oncotarget
  • Wei, J., Wu, A., Kong, L.Y., Wang, Y., Fuller, G., Fokt, I., Melillo, G., Heimberger, A.B., Hypoxia potentiates glioma-mediated immunosuppression (2011) Plos One, 6 (1)
  • Winkler, E.A., Bell, R.D., Zlokovic, B.V., Central nervous system pericytes in health and disease (2011) Nat Neurosci, 14 (11), pp. 1398-1405
  • Wu, X., Giobbie-Hurder, A., Liao, X., Lawrence, D., McDermott, D., Zhou, J., Rodig, S., Hodi, F.S., VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma (2016) Cancer Immunol Res, 4 (10), pp. 858-868
  • Yang, L., Debusk, L.M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., Matrisian, L.M., Lin, P.C., Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis (2004) Cancer Cell, 6 (4), pp. 409-421
  • Yang, M., Ma, C., Liu, S., Shao, Q., Gao, W., Song, B., Sun, J., Qu, X., HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia (2010) Immunol Cell Biol, 88 (2), pp. 165-171
  • Yang, C., Lee, H., Pal, S., Jove, V., Deng, J., Zhang, W., Hoon, D.S., Yu, H., B cells promote tumor progression via STAT3 regulated-angiogenesis (2013) Plos One, 8 (5)
  • Yasuda, S., Sho, M., Yamato, I., Yoshiji, H., Wakatsuki, K., Nishiwada, S., Yagita, H., Nakajima, Y., Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo (2013) Clin Exp Immunol, 172 (3), pp. 500-506
  • Zhao, X.Y., Chen, T.T., Xia, L., Guo, M., Xu, Y., Yue, F., Jiang, Y., Zhao, K.W., Hypoxia inducible factor-1 mediates expression of galectin-1: The potential role in migration/invasion of colorectal cancer cells (2010) Carcinogenesis, 31 (8), pp. 1367-1375
  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Kuchroo, V.K., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat Immunol, 6 (12), pp. 1245-1252
  • Zucchetti, M., Bonezzi, K., Frapolli, R., Sala, F., Borsotti, P., Zangarini, M., Cvitkovic, E., Taraboletti, G., Pharmacokinetics and antineoplastic activity of galectin-1-targeting OTX008 in combination with sunitinib (2013) Cancer Chemother Pharmacol, 72 (4), pp. 879-887

Citas:

---------- APA ----------
Croci, D.O., Mendez-Huergo, S.P., Cerliani, J.P. & Rabinovich, G.A. (2018) . Immune-mediated and hypoxia-regulated programs: Accomplices in resistance to anti-angiogenic therapies. Handbook of Experimental Pharmacology, 249, 31-61.
http://dx.doi.org/10.1007/164_2017_29
---------- CHICAGO ----------
Croci, D.O., Mendez-Huergo, S.P., Cerliani, J.P., Rabinovich, G.A. "Immune-mediated and hypoxia-regulated programs: Accomplices in resistance to anti-angiogenic therapies" . Handbook of Experimental Pharmacology 249 (2018) : 31-61.
http://dx.doi.org/10.1007/164_2017_29
---------- MLA ----------
Croci, D.O., Mendez-Huergo, S.P., Cerliani, J.P., Rabinovich, G.A. "Immune-mediated and hypoxia-regulated programs: Accomplices in resistance to anti-angiogenic therapies" . Handbook of Experimental Pharmacology, vol. 249, 2018, pp. 31-61.
http://dx.doi.org/10.1007/164_2017_29
---------- VANCOUVER ----------
Croci, D.O., Mendez-Huergo, S.P., Cerliani, J.P., Rabinovich, G.A. Immune-mediated and hypoxia-regulated programs: Accomplices in resistance to anti-angiogenic therapies. Handb. Exp. Pharmacol. 2018;249:31-61.
http://dx.doi.org/10.1007/164_2017_29