Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The performance of the combination of the FALL3D ash dispersion model with the Weather Research and Forecast (WRF) meteorological model in the southern cone of South America under two initial and boundary conditions was evaluated. ERA-Interim and NCEP-GFS datasets were used as dynamic conditions by WRF to simulate meteorological fields for FALL3D. As a study case, we used the eruption of the Puyehue-Cordón Caulle Volcanic Complex occurred in Chile in June 2011. The simulated meteorological results were compared with the horizontal wind direction, meridional and zonal wind components, air and dew point temperatures of 7 radio sounding stations using a set of error indicators. In addition, the ash mass load simulated by FALL3D for a day of maximum dispersion of volcanic ash was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, on which the Prata algorithm was applied. As well as this, the WRF-dominant physical processes with both dynamic conditions were analyzed for that same date.Meteorological results indicated that the simulation performed with WRF and NCEP-GFS shows the lowest errors at levels between 925 and 300 hPa. Ash dispersion simulated with FALL3D and WRF in both dynamic conditions shows a different perfomance, which from the synoptic and dynamic viewpoint can be explained for the result of wind intensity and geopotential height. Moreover, WRF intiliazed with NCEP-GFS and FALL3D has a higher degree of concordance with the MODIS image. Based on the analysis and results, it was concluded that for the southern cone of South America, 1) it was not trivial for the simulation of volcanic ash dispersion to use one dynamic condition or another in WRF; 2) in that sense, meteorological variables that influenced the differences in volcanic ash dispersion were horizontal wind intensity and direction and geopotential heights; 3) the system generated from the combination of the WRF model initialized with NCEP-GFS and the FALL3D dispersion model would provide better estimations of ash plume position and deposition in the region. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling
Autor:Mulena, G.C.; Allende, D.G.; Puliafito, S.E.; Lakkis, S.G.; Cremades, P.G.; Ulke, A.G.
Filiación:Grupo de Estudios Atmosféricos y Ambientales, Facultad Regional Mendoza, Universidad Tecnológica Nacional (UTN), Mendoza, Argentina
Facultad Regional Buenos Aires, Universidad Tecnológica Nacional (UTN), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, Argentina
Facultad de Ciencias Agrarias, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Unidad Mixta Internacional (UMI), Instituto Franco Argentino sobre Estudios de Clima y sus Impactos (IFAECI), Centre National de la Recherche Scientifique (CNRS), Intendente Guiraldes 2160, Ciudad Universitaria Pabellon, Buenos Aires, C1428EGA, Argentina
Palabras clave:2011 Puyehue-Cordón Caulle Complex eruption; ERA Interim reanalysis; FALL3D; NCEP-GFS analysis; WRF; Boundary conditions; Dispersions; Image reconstruction; Radiometers; Satellite imagery; Volcanoes; Weather forecasting; FALL3D; Initial and boundary conditions; Meteorological simulations; Moderate resolution imaging spectroradiometer datum; NCEP-GFS analysis; Puyehue; Reanalysis; Volcanic ash dispersions; Atmospheric movements; boundary condition; climate modeling; dispersion; MODIS; satellite data; volcanic ash; volcanic eruption; weather forecasting; wind direction; Los Rios [Chile]; Puyehue-Cordon Caulle; Southern Volcanic Zone
Año:2016
Volumen:176-177
Página de inicio:29
Página de fin:42
DOI: http://dx.doi.org/10.1016/j.atmosres.2016.02.009
Título revista:Atmospheric Research
Título revista abreviado:Atmos. Res.
ISSN:01698095
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01698095_v176-177_n_p29_Mulena

Referencias:

  • Adame, J.A., Valentí-Pía, M.D., Gil-Ojeda, M., Impact evaluation of potential volcanic plumes over Spain (2015) Atmos. Res., 160, pp. 39-49
  • Andronache, C., Estimates of sulfate aerosol wet scavenging coefficient for locations in the Eastern United States (2004) Atmos. Environ., 38, pp. 795-804
  • Berens, P., CircStat: a MATLAB toolbox for circular statistics (2009) J. Stat. Softw., 31, pp. 1-21
  • Bonasia, R., Costa, A., Folch, A., Macedonio, G., Capra, L., Numerical simulation of tephra transport and deposition of the 1982 El Chichón eruption and implications for hazard assessment (2012) J. Volcanol. Geotherm. Res., 231-232, pp. 39-49
  • Borge, R., Alexandrov, V., Josedelvas, J., Lumbreras, J., Rodriguez, E., A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula (2008) Atmos. Environ., 42, pp. 8560-8574
  • Brioude, J., Angevine, W., McKeen, S., Hsie, E., Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain (2012) Geosci. Model Dev. Discuss., 5, pp. 967-991
  • http://www.volcano.si.edu/world/volcano.cfm?vnum=1507-15=&volpage=var, (accessed 02/20/2012); Bursik, M., Effect of wind on the rise height of volcanic plumes (2001) Geophys. Res. Lett., 28, pp. 3621-3624
  • Byun, D., Schere, K.L., Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System (2006) Appl. Mech. Rev., 59, pp. 51-77
  • Carazzo, G., Kaminski, E., Tait, S., The route to self-similarity in turbulent jets and plumes (2006) J. Fluid Mech., 547, pp. 137-148
  • Carn, S., Krueger, A., Krotkov, N., Yang, K., Evans, K., Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation (2009) Nat. Hazards, 51, pp. 325-343
  • Carvalho, D., Rocha, A., Gómez-Gesteira, M., Ocean surface wind simulation forced by different reanalyses: comparison with observed data along the Iberian Peninsula coast (2012) Ocean Model., 56, pp. 31-42
  • Carvalho, D., Rocha, A., Gómez-Gesteira, M., Silva Santos, C., WRF wind simulation and wind energy production estimates forced by different reanalyses: comparison with observed data for Portugal (2014) Appl. Energy, 117, pp. 116-126
  • Casadevall, T.J., The 1989-1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations (1994) J. Volcanol. Geotherm. Res., 62, pp. 301-316
  • Casadevall, T.J., Krohn, M.D., Effects of the 1992 Crater Peak eruption on airports and aviation operations in the United States and Canada (1995) U.S. Geol. Surv. Bull., 2139, pp. 205-220
  • Costa, A., Macedonio, G., Folch, A., A three-dimensional Eulerian model for transport and deposition of volcanic ashes (2006) Earth Planet. Sci. Lett., 241, pp. 634-647
  • Cullen, M.J.P., The unified forecast/climate model (1993) Meteorol. Mag., 122, pp. 81-94
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system (2011) Q. J. R. Meteorol. Soc., 137, pp. 553-597
  • Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model (1989) J. Atmos. Sci., 46, pp. 3077-3107
  • Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley, J.D., Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model (2003) J. Geophys. Res. Atmos., 108, p. 8851
  • Folch, A., Costa, A., Macedonio, G., FALL3D: a computational model for transport and deposition of volcanic ash (2009) Comput. Geosci., 35, pp. 1334-1342
  • Folch, A., Costa, A., Basart, S., Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds (2012) Atmos. Environ., 48, pp. 165-183
  • Ganser, G., A rational approach to drag prediction of spherical and nonspherical particles (1993) Powder Technol., 77, pp. 143-152
  • Gislason, S.R., Hassenkam, T., Nedel, S., Bovet, N., Eiriksdottir, E.S., Alfredsson, H.A., Hem, C.P., Stipp, S.L.S., Characterization of Eyjafjallajokull volcanic ash particles and a protocol for rapid risk assessment (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 7307-7312
  • Guenther, B., Godden, G.D., Xiong, X., Knight, E.J.S.-Y.Q., Montgomery, H., Hopkins, M.M., Khayat, M.G., Hao, Z., Prelaunch algorithm and data format for the Level 1 calibration products for the EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS) (1998) IEEE Trans. Geosci. Remote Sens., 36, pp. 1142-1151
  • Guffanti, M., Mayberry, G.C., Casadevall, T.J., Wunderman, R., Volcanic hazards to airports (2008) Nat. Hazards, 51, pp. 287-302
  • Guffanti, B.M., Casadevall, T.J., Budding, K., Encounters of aircraft with volcanic ash clouds: a compilation of known incidents, 1953-2009: U.S. Geological Survey Data Series 545, ver. 1.0, 12, plus 4 appendixes including the compilation database, , http://pubs.usgs.gov/ds/545/, (accessed 08/20/2015)
  • Hanna, S.R., Strimaitis, D.G., Rugged terrain effects on diffusion. Atmos. Process. over complex terrain (1990) Meteorol. Monogr., 23, pp. 109-143
  • Hong, S.Y., A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon (2010) Q. J. R. Meteorol. Soc., 136, pp. 1481-1496
  • Hong, S.Y., Dudhia, J., Chen, S.H., A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation (2004) Mon. Weather Rev., 132, pp. 103-120
  • Hou, D., Kalnay, E., Droegemeier, K.K., Objective verification of the SAMEX'98 ensemble forecasts (2001) Mon. Weather Rev., 129, pp. 73-91
  • Kain, J.S., The Kain-Fritsch convective parameterization: an update (2004) J. Appl. Meteorol., 43, pp. 170-181
  • Katurji, M., Zhong, S., Zawar-Reza, P., Long-range transport of terrain-induced turbulence from high-resolution numerical simulations (2011) Atmos. Chem. Phys., 11, pp. 11793-11805
  • King, M.D., Kaufman, Y.J., Menzel, W.P., Tanre, D., Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) (1992) IEEE Trans. Geosci. Remote Sens., 30, pp. 2-27
  • Kuo, C.-C., Gan, T.Y., Hanrahan, J.L., Precipitation frequency analysis based on regional climate simulations in Central Alberta (2014) J. Hydrol., 510, pp. 436-446
  • Kvietkus, K., Šakalys, J., Didžbalis, J., Garbariene, I., Špirkauskaite, N., Remeikis, V., Atmospheric aerosol episodes over Lithuania after the May 2011 volcano eruption at Grimsvötn, Iceland (2013) Atmos. Res., 122, pp. 93-101
  • Lange, M., On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors (2005) J. Sol. Energy Eng., 127, pp. 177-184
  • Laprise, R., The Euler equations of motion with hydrostatic pressure as an independent variable (1992) Mon. Weather Rev., 120, pp. 197-207
  • Lara, L.E., Moreno, H., Naranjo, J.A., Matthews, S., Pérez de Arce, C., Magmatic evolution of the Puyehue-Cordón Caulle Volcanic Complex (40°S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism (2006) J. Volcanol. Geotherm. Res., 157, pp. 343-366
  • Macedonio, G., Costa, A., Longo, A., A computer model for volcanic ash fallout and assessment of subsequent hazard (2005) Comput. Geosci., 31, pp. 837-845
  • Mann, H.B., Whitney, D.R., On a test of whether one of two random variables is stochastically larger than the other (1947) Ann. Math. Stat., 18, pp. 50-60
  • Merzlyakov, E.G., Solovjova, T.V., Yudakov, A.A., The interannual variability of a 5-7 day wave in the middle atmosphere in autumn from ERA product data, Aura MLS data, and meteor wind data (2013) J. Atmos. Sol. Terr. Phys., 102, pp. 281-289
  • Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W., (2004) The Weather Research and Forecast Model: Software Architecture and Performance to appear in proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing In Meteorology, 25-29 October 2004
  • Miller, T.P., Casadevall, T.J., Volcanic ash hazards to aviation (2000) Encyclopedia of Volcanoes, pp. 915-930. , Academic Press, San Diego, H. Sigurdsson (Ed.)
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave (1997) J. Geophys. Res. Atmos., 102, pp. 16663-16682
  • http://www2.mmm.ucar.edu/mm5/, (accessed 08/29/2015); Prata, A.J., Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data (1989) Int. J. Remote Sens., 10, pp. 751-761
  • Prata, F., Bluth, G., Rose, B., Schneider, D., Tupper, A., Comments on "Failures in detecting volcanic ash from a satellite-based technique" (2001) Remote Sens. Environ., 78, pp. 341-346
  • Puliafito, S.E., Allende, D.G., Mulena, G.C., Cremades, P., Lakkis, S.G., Evaluation of the WRF model configuration for Zonda wind events in a complex terrain (2015) Atmos. Res., 166, pp. 24-32
  • Raga, G.B., Baumgardner, D., Ulke, A.G., Torres Brizuela, M., Kucienska, B., The environmental impact of the Puyehue-Cordon Caulle 2011 volcanic eruption on Buenos Aires (2013) Nat. Hazards Earth Syst. Sci., 13, pp. 2319-2330
  • Roberts, A.J., Knippertz, P., The formation of a large summertime Saharan dust plume: convective and synoptic-scale analysis (2014) J. Geophys. Res. Atmos., 119, pp. 1766-1785
  • Rodriguez, E., Morris, C.S., Belz, J.E., Chapin, E.C., Martin, J.M., Daffer, W., Hensley, S., An assessment of the SRTM topographic products (2005) Technical Report JPL D-31639, Jet Propulsion Laboratory, p. 143. , Pasadena, California
  • Rojas-Ramos, M., Catalan-Vazquez, M., Martin-Del Pozzo, A.L., Garcia-Ojeda, E., Villalba-Caloca, J., Perez-Neria, J., A seven months prospective study of the respiratory effects of exposure to ash from Popocatepetl Volcano, Mexico (2001) Environ. Geochem. Health, 23, pp. 379-392
  • Rood, R.B., Bosilovich, M.G., Reanalysis: data assimilation for scientific investigation of climate (2010) Data Assimilation: Making Sense of Observations, pp. 623-646. , Springer Berlin Heidelberg, Berlin, Heidelberg, W. Lahoz, B. Khattatov, R. Menard (Eds.)
  • Rose, W.I., Mayberry, G.C., Use of GOES thermal infrared imagery for eruption scale measurements, Soufrière Hills, Montserrat (2000) Geophys. Res. Lett., 27, pp. 3097-3100
  • Ryall, D.B., Maryon, R.H., Validation of the UK Met. Office's NAME model against the ETEX dataset (1998) Atmos. Environ., 32, pp. 4265-4276
  • Satyamurty, P., Nobre, C., Silva Dias, P., South America (1998) Meteorology of the Southern Hemisphere, pp. 119-139. , American Meteorological Society, Boston, USA, D. Karoly, D. Vincent (Eds.)
  • Scaini, C., Folch, A., Navarro, M., Tephra hazard assessment at Concepción Volcano, Nicaragua (2012) J. Volcanol. Geotherm. Res., 219-220, pp. 41-51
  • Scollo, S., Folch, A., Costa, A., A parametric and comparative study of different tephra fallout models (2008) J. Volcanol. Geotherm. Res., 176, pp. 199-211
  • Scollo, S., Prestifilippo, M., Spata, G., D'Agostino, M., Coltelli, M., Monitoring and forecasting Etna volcanic plumes (2009) Nat. Hazards Earth Syst. Sci., 9, pp. 1573-1585
  • Scott, B.C., Luecken, D.J., The sensitivity of modeled sulfate wet deposition to the meteorological values used as input (1992) Atmos. Environ. Part A, 26, pp. 559-569
  • Southern Andes Volcanological Observatory-National Geology, Mining Service Homepage, , http://www.sernageomin.cl/volcan-observatorio.php, (accessed 07/07/2011)
  • Sertel, E., Robock, A., Ormeci, C., Impacts of land cover data quality on regional climate simulations (2010) Int. J. Climatol., 30, pp. 1942-1953
  • Shibata, T., Kinoshita, T., Volcanic aerosol layer formed in the tropical upper troposphere by the eruption of Mt. Merapi, Java, in November 2010 observed by the spaceborne lidar CALIOP (2016) Atmos. Res., 168, pp. 49-56
  • Siebert, L., Simkin, T., Volcanoes of the world: an illustrated catalog of Holocene Volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, , http://www.volcano.si.edu, (accessed 06/08/2015)
  • Siebert, L., Simkin, T., Kimberly, P., (2010) Volcanoes of the World, p. 568. , University of California Press, Berkeley
  • Simpson, J.J., Berg, J.S., Hufford, G.L., Bauer, C., Pieri, D., Servranckx, R., The February 2001 eruption of Mount Cleveland, Alaska: case study of an aviation hazard (2002) Weather Forecast., 17, pp. 691-704
  • Skamarock, W.C., Klemp, J.B., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G., A description of the advanced research WRF Version 3. Mesoscale microscale meteorol (2008) Div. Natl. Cent. Atmos. Res.
  • Smith, C.A., Compo, G.P., Hooper, D.K., Web-Based Reanalysis Intercomparison Tools (WRIT) for analysis and comparison of reanalyses and other datasets (2014) Bull. Am. Meteorol. Soc., 95, pp. 1671-1678
  • Spence, R.J.S., Kelman, I., Baxter, P.J., Zuccaro, G., Petrazzuoli, S., Residential building and occupant vulnerability to tephra fall (2005) Nat. Hazards Earth Syst. Sci., 5, pp. 477-494
  • Spence, R.J.S., Kelman, I., Calogero, E., Toyos, G., Baxter, P.J., Komorowski, J.-C., Modelling expected physical impacts and human casualties from explosive volcanic eruptions (2005) Nat. Hazards Earth Syst. Sci., 5, pp. 1003-1015
  • Spiridonov, V., Ćurić, M., Examination of sulfate chemistry sensitivity in a mid-latitude and tropical storm using a cloud resolving model (2012) Asia-Pac. J. Atmos. Sci., 48, pp. 391-410
  • Sulpizio, R., Mele, D., Dellino, P., Volpe, L., A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy (2005) Bull. Volcanol., 67, pp. 743-767
  • Takacs, L.L., A two-step scheme for the advection equation with minimized dissipation and dispersion errors (1985) Mon. Weather Rev., 113, pp. 1050-1065
  • Thomas, H.E., Prata, A.J., Sulphur dioxide as a volcanic ash proxy during the April-May 2010 eruption of Eyjafjallajökull Volcano, Iceland (2011) Atmos. Chem. Phys., 11, pp. 6871-6880
  • Tsunematsu, N., Nagai, T., Murayama, T., Adachi, A., Murayama, Y., Volcanic ash transport from Mount Asama to the Tokyo metropolitan area influenced by large-scale local wind circulation (2008) J. Appl. Meteorol. Climatol., 47, pp. 1248-1265
  • Historical Unidata Internet Data Distribution (IDD) Gridded Model Data. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, , http://rda.ucar.edu/datasets/ds335.0/, (accessed 08/08/2011)
  • Wilson, T., Cole, J., Stewart, C., Cronin, S., Johnston, D., Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile (2011) Bull. Volcanol., 73, pp. 223-239
  • Witham, C., Webster, H., Hort, M., Jones, A., Thomson, D., Modelling concentrations of volcanic ash encountered by aircraft in past eruptions (2012) Atmos. Environ., 48, pp. 219-229
  • Woodhouse, M.J., Hogg, A.J., Phillips, J.C., Sparks, R.S.J., Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland (2013) J. Geophys. Res. Solid Earth, 118, pp. 92-109
  • Yu, T.X., Rose, W.I., Prata, A.J., Atmospheric correction for satellite-based volcanic ash mapping and retrievals using "split window" IR data from GOES and AVHRR (2002) J. Geophys. Res. Atmos., 107, p. 4311

Citas:

---------- APA ----------
Mulena, G.C., Allende, D.G., Puliafito, S.E., Lakkis, S.G., Cremades, P.G. & Ulke, A.G. (2016) . Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling. Atmospheric Research, 176-177, 29-42.
http://dx.doi.org/10.1016/j.atmosres.2016.02.009
---------- CHICAGO ----------
Mulena, G.C., Allende, D.G., Puliafito, S.E., Lakkis, S.G., Cremades, P.G., Ulke, A.G. "Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling" . Atmospheric Research 176-177 (2016) : 29-42.
http://dx.doi.org/10.1016/j.atmosres.2016.02.009
---------- MLA ----------
Mulena, G.C., Allende, D.G., Puliafito, S.E., Lakkis, S.G., Cremades, P.G., Ulke, A.G. "Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling" . Atmospheric Research, vol. 176-177, 2016, pp. 29-42.
http://dx.doi.org/10.1016/j.atmosres.2016.02.009
---------- VANCOUVER ----------
Mulena, G.C., Allende, D.G., Puliafito, S.E., Lakkis, S.G., Cremades, P.G., Ulke, A.G. Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling. Atmos. Res. 2016;176-177:29-42.
http://dx.doi.org/10.1016/j.atmosres.2016.02.009