Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mendoza is a province of Argentina located between 32° S and 34° S at the leeside of the Andes Foothills. Very intense thunderstorms form between October and March (southern hemisphere summer), which produce large hail and damage in crops and properties. Although some hypotheses and conceptual models were proposed in order to identify key possible mechanisms that contribute to trigger convection, they are still waiting for the validation process. As moisture is the main ingredient for storms formation, the identification of its geographical distribution could be used together with other synoptic and mesoscale forcing features to forecast intense convective events. A novel technique in estimating moisture concentration and its geographical distribution has been introduced in order to observe the influx and variability of humidity at this region, during a 45-day period in midsummer. In doing so, we resort to the information provided by the ground-basedGlobal Navigation Satellite System (GNSS) network. More than 300 active stations constitute the continuously operating GNSS network over Southern and Central America (SIRGAS-CON, Sistema de Referencia Geocéntrico para las Américas de Operación Continua). This network allows to retrieve integrated water vapor (IWV) content, mapping this variable by the use of a digital model of terrain. In the period and region under study, a prevailing influx of humidity from N and NE and a high correlation between the accumulation/depletion of humidity and the hail/no hail precipitation days is observed. We discuss in particular the development of five storms detected by the S-Band radar network belonging to the Province of Mendoza. Although the results strongly suggest that IWV maps are capable to represent the humidity dynamics in the considered region, it is still important to highlight that the calculated values for IWV are unrealistic at some locations as the consequence of deep atmospheric gradients. These biases may be explained by the fact that the GNSS observations are made over the whole horizon of each given site. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina)
Autor:Calori, A.; Santos, J.R.; Blanco, M.; Pessano, H.; Llamedo, P.; Alexander, P.; de la Torre, A.
Filiación:Facultad de Ingeniería, Universidad Nacional de Cuyo, Parque General San Martín, Ciudad Universitaria, Mendoza, CPM5502JMA, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Cuyo, Mendoza, CPM5502JMA, Argentina
Facultad Regional San Rafael, Universidad Tecnológica Nacional, Avda. Urquiza 314, San Rafael, Mendoza, M5602GCH, Argentina
Dirección de Agricultura y Contingencias Climáticas, Gobierno de Mendoza, San Martín 1850, Mendoza, M5560EWS, Argentina
Facultad de Ingeniería, Universidad Austral, Mariano Acosta 191, Pilar, Provincia de Buenos Aires, B1629ODT, Argentina
IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Palabras clave:Ground-based GNSS meteorology; IWV mapping; Severe storms; SIRGAS network; Geographical distribution; Global positioning system; Mapping; Moisture; Precipitation (meteorology); Storms; Water vapor; Ground based; Integrated water vapors; Moisture concentration; Navigation-satellite systems; Possible mechanisms; Severe storms; Southern Hemisphere; Validation process; Atmospheric humidity; GNSS; ground-based measurement; mapping; meteorology; severe weather; thunderstorm; water vapor; Argentina; Cuyo Basin; Mendoza
Año:2016
Volumen:176-177
Página de inicio:267
Página de fin:275
DOI: http://dx.doi.org/10.1016/j.atmosres.2016.03.002
Título revista:Atmospheric Research
Título revista abreviado:Atmos. Res.
ISSN:01698095
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01698095_v176-177_n_p267_Calori

Referencias:

  • Askne, J., Nordius, H., Estimation of tropospheric delay for microwaves from surface weather data (1987) Radio Sci., 22, pp. 379-386
  • Barthlott, C., Corsmeier, C., Meißner, C., Braun, F., Kottmeier, C., The influence of mesoscale circulation systems on triggering convective cells over complex terrain (2006) Atmos. Res., 81, pp. 150-175
  • Barthlott, C., Schipper, J.W., Kalthoff, N., Adler, B., Kottmeier, C., Blyth, A., Mobbs, S., Model representation of boundary-layer convergence triggering deep convection over complex terrain: a case study from COPS (2010) Atmos. Res., 95, pp. 172-185
  • Berg, H., (1948) Allgemeine meteorologie, , Dümmler's Verlag, Bonn, (in German)
  • Berri, G., Inzunza, J.B., The effect of the low-level jet on the poleward water vapour transport in the central region of South America. Atmospheric environment. Part A (1993) General Topics, 27, pp. 335-341
  • Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware, R.H., GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system (1992) J. Geophys. Res., 97 (D14), pp. 15787-15801
  • Brenot, H., Ducrocq, V., Walpersdorf, A., Champollion, C., Caumont, O., GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8-9 September 2002 flash flood over southeastern France (2006) J. Geophys. Res., 111 (D15), p. 105
  • Brenot, H., Neméghaire, J., Delobbe, L., Clerbaux, N., De Meutter, P., Deckmyn, A., Delcloo, A., Van Roozendael, M., Preliminary signs of the initiation of deep convection by GNSS (2013) Atmos. Chem. Phys., 13, pp. 5425-5449
  • Brooks, H.E., Lee, J.W., Craven, J.P., The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data (2003) Res., 67-68, pp. 73-94
  • Brunini, C., Meza, A., Gende, M., Azpilicueta, F., South American regional maps of vertical TEC computed by GESA: a service for the ionospheric community (2008) Adv, Space Res., Amsterdam, 42, pp. 737-744
  • Brunini, C., Sánchez, L., Drewes, H., Costa, S., Mackern, V., Martinez, W., Seemüeller, W., Da Silva, A., Improved analysis strategy and accessibility of the SIRGAS reference frame (2012) geodesy for planet earth, IAG Symposia, 136, pp. 3-10. , S. Kenyon, M.C. Pacino, U. Marti (Eds.)
  • Byun, S.H., Bar-Server, Y.E., A new type of troposphere zenith path delay product of the international GNSS service (2009) J. Geod., 83 (3-4), pp. 367-373
  • Calori, A., Colosimo, G., Crespi, M., Azpilicueta, F., Gende, M., Brunini, C., Mackern, M.V., Zenith wet delay retrieval using two different techniques for the South American region and their comparison (2014) International Association of Geodesy Symposia, Berlin, 139, pp. 59-64. , C. Rizos, P. Willis (Eds.)
  • Calori, A., Colosimo, G., Crespi, M., Mackern, M.V., Comparison of different techniques for retrieving the ZWD over South America and surrounding oceans (2015) International Association of Geodesy Symposia, 142, pp. 1-7. , N. Sneeuw, P. Novák, M. Crespi, F. Sansò (Eds.)
  • Davis, J.L., Herring, T.A., Shapiro, I., Rogers, A.E., Elgened, G., Geodesy by interferometry: effects of atmospheric modeling errors on estimates of base line length (1985) Radio Sci., 20, pp. 1593-1607
  • Dee, D.P., Uppala, S.M., Simmons, A.J., The ERA-Interim reanalysis: configuration and performance of the data assimilation system (2011) Q. J. R. Meteorol. Soc., 137, pp. 553-597
  • de Haan, S., Assimilation of GNSS ZTD and radar radial velocity for the benefit of very-short-range regional weather forecasts. Q.J.R (2013) Meteorol. Soc., 139, pp. 2097-2107
  • de la Torre, A., Vincent, D., Tailleaux, R., Teitelbaum, H., A deep convection event above the Tunuyn Valley near to the Andes Mountains (2004) Mon. Weather Rev., 132 (9), pp. 2259-2268
  • de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: jet mechanism? (2006) Geophys. Res. Lett., 33
  • de la Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., Wickert, J., Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula (2012) J. Geophys. Res., 117
  • de la Torre, A., Pessano, H., Hierro, R., Santos, R., Llamedo, P., Alexander, P., The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains (2015) Atmos. Res.
  • Dixon, M., Wiener, G., TITAN: thunderstorm identification, tracking, analysis and nowcasting, a radar-based methodology (1993) J. Atmos. Ocean. Technol., 10, pp. 785-797
  • Drewes, H., Heidbach, O., The 2009 horizontal velocity field for South America and the Caribbean (2012) Geodesy for Planet Earth, IAG Symposia, 136, pp. 657-664. , S. Kenyon, M.C. Pacino, U. Marti (Eds.)
  • Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., King, R.W., GPS meteorology: direct estimation of the absolute value of precipitable water (1996) J. Appl. Meteorol., 35, pp. 830-838
  • García-Ortega, E., López, L., Sánchez, J.L., Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes (2009) Atmos. Res., 93, pp. 161-178
  • Garreaud, R.D., Multiscale analysis of the summertime precipitation over the Central Andes (1999) Mon. Weather Rev., 127, pp. 901-921
  • Graham, E., Koffi, E., Mätzler, C., An observational study of air and water vapour convergence over the Bernese Alps, Switzerland, during summertime and the development of isolated thunderstorms (2012) Meteorol. Z., 21 (6), pp. 561-574
  • Guerova, G., Jones, J., Dousa, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Vedel, H., Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC) (2013) Proceedings of the 4th International Colloquium-Scientific and Fundamental Aspects of the Galileo Programme, Prague, Czech Republic, 4-6.12
  • Hogg, D.C., Guiraud, F.O., Sweezy, W.B., The short-term temporal spectrum of precipitable water vapor (1981) Science, 213, pp. 1112-1113
  • Johns, R.H., Doswell, C.A.I.I.I., Severe local storms forecasting (1992) Weather Forecast., 7, pp. 588-612
  • Jones, D.A., Simmonds, I., A climatology of southern hemisphere anticyclones (1994) Clim. Dyn., 10, pp. 333-348
  • Kalthoff, N., Adler, B., Barthlott, C., Corsmeier, U., Mobbs, S., Crewell, S., Träumner, K., Smith, V., The impact of convergence zones on the initiation of deep convection: a case study from COPS (2009) Atmos. Res., 93, pp. 680-694
  • Kleeman, R., A modeling study of the effect of the Andes on the summertime circulation of tropical South America (1989) J. Atmos. Sci., 46, pp. 3344-3362
  • Kouba, J., Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1) (2008) J. Geodyn.
  • Manning, T., Zhang, K., Rohm, W., Choy, S., Hurter, F., Detecting severe weather in Australia using GPS tomography (2012) J. Global Pos. Syst., 11 (1), pp. 58-70
  • Marengo, J.A., Douglas, M.W., Silva Dias, P.L., The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign (2002) J. Geophys. Res., 107 (D20), p. 8079
  • Mendes, V.B., (1999) Modeling the Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques, (Ph.D. dissertation), , Univ. of New Brunswick, Canada
  • Mendes, V.B., Prates, G., Santos, L., Langley, R.B., (2000) An evaluation of models for the determination of the weighted mean temperature of the atmosphere, paper presented at Institute of Navigation 2000 National Technical Meeting, , Univ. of N. B, Anaheim, Calif
  • Nicolini, M., Saulo, A.C., Eta characterization of the 1997-1998 warm season Chaco jet cases (2000) Preprints 6th International Conference on Southern Hemisphere Meteorology and Oceanography, Chile, pp. 330-331
  • Nicolini, M., García Skabar, Y., Diurnal cycle in convergence patterns in the boundary layer east of the Andes and convection (2011) Atmos. Res., 100 (4), pp. 377-390
  • Nogués-Paegle, J., Mo, K., Alternating wet and dry conditions over South America during summer (1997) Mon. Weather Rev., 125, pp. 279-291
  • Norte, F., Clasificación sinóptica de las tormentas convectivas y su relación con las tareas operativas en el área de defensa. Informe de las primeras experiencias de ajuste de defensa. Temporada granicera 1978-1979 (1980) Tomo 2 Pag. 51-95. Programa Nacional de Lucha Antigranizo. Comisión Nacional de Investigaciones Espaciales
  • Pan, Z., Arritt, R.W., Takle, E.S., Gutowski, W.J., Anderson, C.J., Segal, M., Altered hydrologic feedback in a warming climate introduces a "warming hole," (2004) Geophys. Res. Lett., 31
  • Rabus, B., Eineder, M., Roth, A., Bamler, R., The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar (2003) ISPRS J. Photogramm. Remote Sens., 57, pp. 241-262
  • Rocken, C., Van Hove, T., Ware, R., Near real-time sensing of atmospheric water vapor (1997) Geophys. Res. Lett., 24, pp. 3221-3224
  • Saastamoinen, J., Contribution to the theory of atmospheric refraction (1972) Bull. Géod., 107, pp. 13-34
  • Salio, P., Nicolini, M., Saulo, A.C., Chaco low-level jet events characterization during the austral summer season (2002) J. Geophys. Res., 107 (D24), p. 4816
  • Salio, P., Hobouchian, M.P., García Skabar, J., Vila, D., Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network (2015) Atmos. Res., 163, pp. 146-161
  • Sánchez, L., Brunini, C., Achievements and challenges of SIRGAS (2009) IAG Symposia, 134, pp. 161-166. , Springer, Heidelberg, H. Drewes (Ed.) Geodetic Reference Frames
  • Sánchez, L., Seemüller, W., Seitz, M., Combination of the weekly solutions delivered by the SIRGAS processing centres for the SIRGAS-CON reference frame (2012) Geodesy for Planet Earth, IAG Symposia, 136, pp. 845-851. , S. Kenyon, M.C. Pacino, U. Marti (Eds.)
  • Sánchez, L., Drewes, H., Brunini, C., Mackern, M.V., Martínez-Díaz, W., SIRGAS core network stability (2015) IAG Symposia, 143, pp. 1-8. , Springer, Switzerland
  • Saulo, A.C., Nicolini, M., Chou, S.C., Model characterization of the South American low-level flow during the 1997-1998 spring-summer season (2000) Clim. Dyn., 16, pp. 867-881
  • Saurral, R., Camilloni, I., Ambrizzi, T., Links between topography, moisture fluxes and precipitation over South America (2014) Clim. Dyn., 45, pp. 777-789
  • Simonelli, S., Norte, F., Heredia, N., Seluchi, M., The storm of January 1, 2000, north of the city of Mendoza (2007) Atmosfera, 20 (1), pp. 1-23
  • Stensrud, D.J., Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season (1996) J. Atmos. Sci., 53, pp. 3503-3527
  • Teitelbaum, H., Le Treut, H., Moustaoui, M., Cabrera, G.C., Ibañez, G., Deep convection east of the Andes Cordillera: a test case analysis of airmass origin (2008) Mon. Weather Rev., 136, pp. 2201-2209
  • Tregoning, P., Boers, R., O'Brien, D., Hendy, M., Accuracy of absolute precipitable water vapor estimates from GPS observations (1998) J. Geophys. Res., 103
  • Van Baelen, J., Reverdy, M., Tridon, F., Labbouz, L., Dick, G., Bender, M., Hagen, M., On the relationship between water vapour field evolution and the life cycle of precipitation systems (2011) Q. J. R. Meteorol. Soc., 137, pp. 204-223
  • Virji, H., A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds (1981) Mon. Weather Rev., 109, pp. 599-610
  • Wang, H., Fu, R., Influence of cross-Andes flow on the South American low-level jet (2004) J. Clim., 17, pp. 1247-1262
  • Yao, Y., Xu, C., Shi, J., Cao, N., Zhang, B., Yang, J., ITG: a new global GNSS tropospheric correction model (2015) Sci. Report., 5, p. 10273

Citas:

---------- APA ----------
Calori, A., Santos, J.R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P. & de la Torre, A. (2016) . Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina). Atmospheric Research, 176-177, 267-275.
http://dx.doi.org/10.1016/j.atmosres.2016.03.002
---------- CHICAGO ----------
Calori, A., Santos, J.R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P., et al. "Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina)" . Atmospheric Research 176-177 (2016) : 267-275.
http://dx.doi.org/10.1016/j.atmosres.2016.03.002
---------- MLA ----------
Calori, A., Santos, J.R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P., et al. "Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina)" . Atmospheric Research, vol. 176-177, 2016, pp. 267-275.
http://dx.doi.org/10.1016/j.atmosres.2016.03.002
---------- VANCOUVER ----------
Calori, A., Santos, J.R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P., et al. Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina). Atmos. Res. 2016;176-177:267-275.
http://dx.doi.org/10.1016/j.atmosres.2016.03.002