Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains
Autor:de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J.R.; Llamedo, P.; Alexander, P.
Filiación:Facultad de Ingeniería, Universidad Austral, Avda. J. de Garay 125, ABB Buenos Aires, C1063, Argentina
Facultad Regional San Rafael, Universidad Tecnológica Nacional, Avda. Urquiza 314, San Rafael Mendoza, M5602GCH, Argentina
Dirección de Agricultura y Contingencias Climáticas, Gobierno de Mendoza, San Martín 1850, Mendoza, M5560EWS, Argentina
Departamento de Física, FCEN Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, CPM5502JMA, Argentina
Palabras clave:Andes; Mendoza; Mountain waves; Storms; Air; Arid regions; Atmospheric turbulence; Kinetic energy; Kinetics; Landforms; Natural convection; Planetary surface analysis; Potential energy; Precipitation (meteorology); Radar; Velocity; Wavelet transforms; Andes; Continuous Wavelet Transform; Convection inhibitions; Convective available potential energies; Mendoza; Mountain wave; Natural laboratories; Potential temperature; Storms; atmospheric convection; gravity wave; hail; mountain; semiarid region; severe weather; storm; temperature profile; topographic effect; Andes; Argentina; Mendoza
Año:2015
Volumen:156
Página de inicio:91
Página de fin:101
DOI: http://dx.doi.org/10.1016/j.atmosres.2014.12.020
Título revista:Atmospheric Research
Título revista abreviado:Atmos. Res.
ISSN:01698095
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01698095_v156_n_p91_delaTorre

Referencias:

  • Barry, R., (2008) Mountain Weather and Climate 3rd Edition, , Cambridge University Press, Cambridge, UK
  • Bolton, D., The computation of equivalent potential temperature (1980) Mon. Weather Rev., 108, pp. 1046-1053
  • Chimonas, G., Nappo, C.J., A thunderstorm bow wave (1987) J. Atmos. Sci., 44, pp. 533-541
  • Cotton, W., Anthes, R., (1989) Storm and Cloud Dynamics, , Academic Press, New York
  • de la Torre, A., Daniel, V., Tailleux, R., Teitelbaum, H., A deep convection event above the Tunuyán Valley near to the Andes Mountains (2004) Mon. Weather Rev., 132, pp. 2259-2268
  • de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: jet mechanism? (2006) Geophys. Res. Lett., 33, p. L24810
  • de la Torre, A., Hierro, R., Llamedo, P., Rolla, A., Alexander, P., Severe hail storms near southern Andes in the presence of mountain waves (2011) Atmos. Res., 101 (1-2), pp. 112-123
  • de la Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., Wickert, J., Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula (2012) J. Geophys. Res., 117, p. D02106
  • Dixon, M., Wiener, G., TITAN: thunderstorm identification, tracking, analysis and nowcasting, a radar-based methodology (1993) J. Atmos. Ocean. Technol., 10, pp. 785-797
  • Doswell, C.A., Severe convective storms: an overview (2001) Meteorol. Monogr., 28, pp. 1-26
  • Eckermann, S.D., Preusse, P., Global measurements of stratospheric mountain waves from space (1999) Science, 286, pp. 1534-1537
  • Emanuel, K.A., (1994) Atmospheric Convection, , Oxford University Press, New York
  • Eom, J.K., Analysis of the internal gravity wave occurrence of 19 April 1970 in the Midwest (1975) Mon. Weather Rev., 103, pp. 217-226
  • Fraile, R., Castro, A., Sánchez, J.L., Marcos, J.L., López, L., Noteworthy C-band radar parameters of storms on hail days in northwestern Spain (2001) Atmos. Res., p. 4161
  • Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys., 41
  • García-Ortega, E., López, L., Sánchez, J.L., Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes (2009) Atmos. Res., 93, pp. 161-178
  • Hierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P., Odiard, A., Orographic effects related to deep convection events over the Andes region (2013) Atmos. Res., 120, pp. 216-225
  • Hooke, W.H., Gravity waves. Mesoscale meteorology and forecasting (1986) Amer. Meteor. Soc., pp. 272-288. , P. Ray (Ed.)
  • Houze, R.A., Orographic effects on precipitating clouds (2012) Rev. Geophys., 50, p. RG1001
  • Johns, R.H., Doswell, C.A., Severe local storms forecasting (1992) Weather Forecast., 7, pp. 588-612
  • Koppel, L.L., Bosart, L.F., Keyser, D., A 25-yr climatology of large amplitude hourly surface pressure changes over the conterminous United States (2000) Mon. Weather Rev., 128, pp. 51-68
  • Landel, G.J., Smith, A., Baeck, M.L., Steiner, M., Ogden, F.L., Radar studies of heavy convective rainfall in mountainous terrain (1999) J. Geophys. Res., 104 D (24), pp. 31451-31465
  • Llamedo, P., de la Torre, A., Alexander, P., Luna, D., Schmidt, T., Wickert, J., A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: two case studies (2009) Adv. Space Res., 44, pp. 494-500
  • Lowndes, S., Forecasting large 24-h rainfall totals in the Dee and Clwyd river authority area from September to February (1968) Meteorol. Mag., 97, pp. 226-235
  • Robinson, W.D., Srivastava, R.C., Calculations of hailstone growth in a sloping steady updraft (1982) Atmosphere-Ocean, 20 (1), pp. 76-89
  • Roe, G.H., Montgomery, D.R., Hallet, B., Orographic precipitation and the relief of mountain ranges (2003) J. Geophys. Res., 108, p. 2315
  • Sánchez, J.L., García, E., Marcos, J.L., Dessens, J., Formation of big and giant drops inside Mediterranean convective cells (1999) Proc. EGS Plinius Conference held at Maratea, Italy, October 14-16, pp. 57-65
  • Sánchez, J.L., López, L., Bustos, C., Marcos, J.L., García-Ortega, E., Short term forecast of thunderstorms in Argentina (2008) Atmos. Res., 88, pp. 36-45
  • Sawyer, J.S., The physical and dynamical problems of orographic rain (1956) Weather, 11, p. 37581
  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., Huang, X.-Y., Wang, W., A description of the advanced research WRF Version 3 (2008) NCAR Technical Note NCAR/TN-475+STR
  • Smith, R.B., The influence of mountains on the atmosphere (1979) Adv. Geophys., 21, p. 87230
  • Stobie, J.G., Einaudi, F., Uccellini, L.W., A case study of gravity waves convective storms interactions: 9 May 1979 (1983) J. Atmos. Sci., 40, pp. 2804-2830
  • Torrence, C., Compo, G.P., A practical guide to wavelet analysis (1998) Bull. Am. Meteorol. Soc., 79, pp. 61-78
  • Uccellini, L.W., A case study of apparent gravity wave initiation of severe convective storms (1975) Mon. Weather Rev., 103, pp. 497-513
  • Uccellini, L.W., Kock, S.E., The synoptic setting and possible energy sources for mesoscale wave disturbances (1987) Mon. Weather Rev., 115, pp. 721-729
  • Velasco, I., Fritsch, J.M., Mesoscale convective complexes in the Americas (1987) J. Geophys. Res., 92 D (8), pp. 9591-9613

Citas:

---------- APA ----------
de la Torre, A., Pessano, H., Hierro, R., Santos, J.R., Llamedo, P. & Alexander, P. (2015) . The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains. Atmospheric Research, 156, 91-101.
http://dx.doi.org/10.1016/j.atmosres.2014.12.020
---------- CHICAGO ----------
de la Torre, A., Pessano, H., Hierro, R., Santos, J.R., Llamedo, P., Alexander, P. "The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains" . Atmospheric Research 156 (2015) : 91-101.
http://dx.doi.org/10.1016/j.atmosres.2014.12.020
---------- MLA ----------
de la Torre, A., Pessano, H., Hierro, R., Santos, J.R., Llamedo, P., Alexander, P. "The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains" . Atmospheric Research, vol. 156, 2015, pp. 91-101.
http://dx.doi.org/10.1016/j.atmosres.2014.12.020
---------- VANCOUVER ----------
de la Torre, A., Pessano, H., Hierro, R., Santos, J.R., Llamedo, P., Alexander, P. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains. Atmos. Res. 2015;156:91-101.
http://dx.doi.org/10.1016/j.atmosres.2014.12.020