Artículo

Hierro, R.; Pessano, H.; Llamedo, P.; de la Torre, A.; Alexander, P.; Odiard, A. "Orographic effects related to deep convection events over the Andes region" (2013) Atmospheric Research. 120-121:216-225
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we analyze a set of 39 storms which took place between 2006 and 2011 over the South of Mendoza, Argentina. This is a semiarid region situated at mid-latitudes (roughly between 32S and 36S) at the east of the highest Andes tops which constitutes a natural laboratory where diverse sources of gravity waves usually take place. We consider a cultivated subregion near San Rafael district, where every summer a systematic generation of deep convection events is registered. We propose that the lift mechanism required to raise a parcel to its level of free convection is partially supplied by mountain waves (MWs). From Weather Research and Forecasting (WRF) mesoscale model simulations and radar network data, we calculate the evolution of convective available potential energy and convective inhibition indices during the development of each storm. Global Final Analysis is used to construct initial and boundary conditions. Convective inhibition indices are compared with the vertical kinetic energy capable of being supplied by the MWs, in order to provide a rough estimation of this possible triggering mechanism. Vertical velocity is chosen as an appropriate dynamical variable to evidence the presence of MWs in the vicinity of each detected first radar echo. After establishing a criterion based on a previous work to represent MWs, the 39 storms are split into two subsets: with and without the presence of MWs. 12 cases with considerable MWs amplitude are retained and considered. Radar data differences between the two samples are analyzed and the simulated MWs are characterized. © 2012 Elsevier B.V.

Registro:

Documento: Artículo
Título:Orographic effects related to deep convection events over the Andes region
Autor:Hierro, R.; Pessano, H.; Llamedo, P.; de la Torre, A.; Alexander, P.; Odiard, A.
Filiación:Universidad Austral, Avda. J. de Garay 125, C1063ABB Buenos Aires, Argentina
Universidad Tecnológica Nacional, Avda. Urquiza 314, M5602GCH San Rafael, Mendoza, Argentina
Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
Dirección de Agricultura y Contingencias Climáticas, Gobierno de Mendoza, San Martín 1850, M5560EWS Mendoza, Argentina
Palabras clave:Andes; Mendoza; Mountain waves; Storms; Andes; Convective available potential energies; Convective inhibition; Initial and boundary conditions; Mendoza; Mesoscale model simulation; Mountain wave; Weather research and forecasting; Arid regions; Atmospheric turbulence; Computer simulation; Kinetics; Radar; Storms; Weather forecasting; Natural convection; atmospheric convection; boundary condition; gravity wave; kinetic energy; mesoscale meteorology; midlatitude environment; orographic effect; semiarid region; storm; weather forecasting; Andes; Argentina; Mendoza
Año:2013
Volumen:120-121
Página de inicio:216
Página de fin:225
DOI: http://dx.doi.org/10.1016/j.atmosres.2012.08.020
Título revista:Atmospheric Research
Título revista abreviado:Atmos. Res.
ISSN:01698095
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01698095_v120-121_n_p216_Hierro

Referencias:

  • Brooks, H.E., Doswell, C.A., Kay, M.P., Climatological estimates of local daily tornado probability for the United States (2003) Weather Forecast., 18, pp. 626-664
  • Colby, F.P., Convective inhibition as a predictor of convection during AVE-SESAME II (1984) Mon. Weather Rev., 112, pp. 2239-2252
  • de la Torre, A., Vincent, D., Tailleaux, R., Teitelbaum, H., A deep convection event above the Tunuyán Valley near to the Andes Mountains (2004) Mon. Weather Rev., 132 (9), pp. 2259-2268
  • de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: jet mechanism? (2006) Geophys. Res. Lett., 33, pp. L24810
  • de la Torre, A., Hierro, R., Llamedo, P., Rolla, A., Alexander, P., Severe hail storms near southern Andes in the presence of mountain waves (2011) Atmos. Res., 101 (1-2), pp. 112-123
  • Dixon, M., Wiener, G., TITAN: thunderstorm identification, tracking, analysis and nowcasting, a radar-based methodology (1993) J. Atmos. Oceanic Technol., 10, pp. 785-797
  • Donavon, R.A., Jungbluth, K.A., Evaluation of a technique for radar identification of large hail across the Upper Midwest and Central Plains of the United States (2007) Weather Forecast., 22, pp. 244-254
  • Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model (1989) J. Atmos. Sci., 46, pp. 3077-3107
  • Eckermann, S.D., Preusse, P., Global measurements of stratospheric mountain waves from space (1999) Science, 286, pp. 1534-1537
  • Emanuel, K.A., (1994) Atmospheric Convection, , Oxford University Press, New York, 580 pp
  • Fraile, R., Castro, A., Sánchez, J.L., Marcos, J.L., López, L., Noteworthy C-band radar parameters of storms on hail days in northwestern Spain (2001) Atmos. Res., 59-60, pp. 41-61
  • Galway, J.G., The lifted index as a predictor of latent instability (1956) Bull. Am. Meteorol. Soc., 37, pp. 528-529
  • García-Ortega, E., López, L., Sánchez, J.L., Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes (2009) Atmos. Res., 93, pp. 161-178
  • George, J.J., (1960) Weather and Forecasting for Aeronautics, pp. 410-415. , Academic Press
  • Grell, G.A., Devenyi, D., A generalized approach to parameterizing convection combining ensemble and data assimilation techniques (2002) Geophys. Res. Lett., 29
  • Hong, S.-Y., Dudhia, J., Chen, S.-H., A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation (2004) Mon. Weather Rev., 132, pp. 103-120
  • Hong, S.-Y., Noh, Y., Dudhia, J., A new vertical diffusion package with an explicit treatment of entrainment processes (2006) Mon. Weather Rev., 134, pp. 2318-2341
  • Houze, R.A., (1993) Cloud Dynamics, , Academic Press, New York, USA
  • Houze, R.A., Orographic effects on precipitating clouds (2012) Rev. Geophys., 50, pp. RG1001
  • Johns, R.H., Doswell, C.A., Severe local storms forecasting (1992) Weather Forecast., 7, pp. 588-612
  • Lemon, L.R., Severe thunderstorm radar identification techniques and warning criteria (1980) NOAA Tech. Memo. NWS NSSFC-3, , 60 pp
  • López, L., Sánchez, J.L., Discriminant methods for radar detection of hail (2009) Atmos. Res., 93, pp. 358-368
  • López, L., García-Ortega, E., Sánchez, J.L., A shortterm forecast model for hail (2007) Atmos. Res., 83, pp. 176-184
  • Mahalov, A., Moustaoui, M., Grubiic, V., A numerical study of mountain waves in the upper troposphere and lower stratosphere (2011) Atmos. Chem. Phys., 11, pp. 5123-5139
  • Miglietta, M.M., Buzzi, A., A numerical study of moist stratified flow regimes over isolated topography (2004) Q. J. R. Meteorol. Soc., 130, pp. 1749-1770
  • Miglietta, M.M., Rotunno, R., Numerical simulations of conditionally unstable flows over a ridge (2009) J. Atmos. Sci., 66, pp. 1865-1885
  • Miller, R.C., Notes on analysis and severe storm forecasting procedures of the Military Weather Warning Center (1967) AWS Tech. Rep. 200, , 94 pp. [Headquarters, AWS, Scott AFB, 1L 62225]
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave (1997) J. Geophys. Res., 102 D14, pp. 16663-16682
  • Moncrieff, M.W., Miller, M.J., The dynamics and simulation of tropical cumulonimbus and squall lines (1976) Q. J. R. Meteorol. Soc., 102, pp. 373-394
  • Monin, A.S., Obukhov, A.M., Basic laws of turbulent mixing in the surface layer of the atmosphere (1954) Trans. Geophys. Inst. Akad. Nauk. USSR, 151, pp. 163-187
  • Nappo, C.J., An introduction to atmospheric gravity waves (2002) Int. Geophys. Ser., 85. , Academic, San Diego, California, 276 pp
  • Riemann-Campe, K., Fraedrich, K., Lunkeit, F., Global climatology of 631 convective available potential energy (CAPE) and convective inhibition 632 (CIN) in ERA-40 reanalysis (2009) Atmos. Res., 93, pp. 534-545
  • Sánchez, J.L., García, E., Marcos, J.L., Dessens, J., (1999) Proceedings of the EGS Plinius Conference held at Maratea, October, Italy
  • Sánchez, J.L., López, L., Bustos, C., Marcos, J.L., García-Ortega, E., Short-term forecast of thunderstorms in Argentina (2008) Atmos. Res., 88, pp. 36-45
  • Schneidereit, M., Schär, C., Idealised numerical experiments of Alpine flow regimes and Southside precipitation events (1999) Meteorol. Atmos. Phys., 72, pp. 233-250
  • Showalter, A.K., A stability index for thunderstorm forecasting (1953) Bull. Am. Meteorol. Soc., 34, pp. 250-252
  • Shutts, G.J., Kitchen, M., Hoare, P.H., A large amplitude gravity wave in the lower stratosphere detected by radiosonde (1988) Q. J. R. Meteorol. Soc., 114, pp. 579-594
  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M., Huang, X.-Y., Powers, J.G., A description of the advanced research WRF version 3 (2008) NCAR Technical Note NCAR/TN-475+STR
  • Smith, R.B., The influence of mountains on the atmosphere (1979) Adv. Geophys., 21, pp. 87-230
  • Torrence, C., Compo, G.P., A practical guide to wavelet analysis (1998) Bull. Am. Meteorol. Soc., 79, p. 6178
  • Williams, E., Renno, N., An analysis of the conditional instability of the tropical atmosphere (1992) Mon. Weather Rev., 121 (1), pp. 21-36

Citas:

---------- APA ----------
Hierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P. & Odiard, A. (2013) . Orographic effects related to deep convection events over the Andes region. Atmospheric Research, 120-121, 216-225.
http://dx.doi.org/10.1016/j.atmosres.2012.08.020
---------- CHICAGO ----------
Hierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P., Odiard, A. "Orographic effects related to deep convection events over the Andes region" . Atmospheric Research 120-121 (2013) : 216-225.
http://dx.doi.org/10.1016/j.atmosres.2012.08.020
---------- MLA ----------
Hierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P., Odiard, A. "Orographic effects related to deep convection events over the Andes region" . Atmospheric Research, vol. 120-121, 2013, pp. 216-225.
http://dx.doi.org/10.1016/j.atmosres.2012.08.020
---------- VANCOUVER ----------
Hierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P., Odiard, A. Orographic effects related to deep convection events over the Andes region. Atmos. Res. 2013;120-121:216-225.
http://dx.doi.org/10.1016/j.atmosres.2012.08.020