Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hummocky terrains of Deception Island (Antarctic Peninsula) are continuous surfaces with decimetre to metre wide and decimetre depth bumps located mainly in the lower section of sloping lapilli and scoria terrains. A detailed study site between Cerro Caliente and Crater Lake was selected for the detailed mapping of hummocky terrains and for modelling their spatial distribution according to controlling geographical factors. A model of the susceptibility of occurrence of the hummocky terrains was created using the information value method, together with five independent variables: elevation, slope, global summer radiation, total curvature and lithology. Success and prediction rate curves were used for model validation and the Area Under the Curve index was used to quantify the levels of performance and prediction. The results were of high quality with a success rate of 88% and a prediction rate of 78%. The classes of the independent variables with more relevance in the occurrence of hummocky terrains were: elevation between 20-30m and 60-70m; concave or rectilinear/flat areas; slopes between 8 and 12 o; tuff cones and maar deposits and global summer radiation between 1.8 and 2.0 TJm -2. The good quality of the modelling results supports its use for assessing the future potential for formation of new hummocky terrain areas, or even to estimate the spatial distribution of buried ice within the permafrost environment of Deception Island. © 2011 Elsevier B.V.

Registro:

Documento: Artículo
Título:Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic Peninsula)
Autor:Melo, R.; Vieira, G.; Caselli, A.; Ramos, M.
Filiación:Institute of Geography and Territorial Planning, University of Lisbon, Alameda da Universidade, 1600-214 Lisbon, Portugal
Department of Geological Sciences, University of Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pab.2. C1428EHA, Buenos Aires, Argentina
Department of Physics, University of Alcalá, E-28871 Alcalá de Henares, Spain
Palabras clave:Antarctic Peninsula; Deception Island; Hummocky terrains; Information value method; Spatial modelling; formation mechanism; geomorphological mapping; GIS; hummocky cross-stratification; lithology; numerical model; performance assessment; prediction; quantitative analysis; spatial data; spatial distribution; terrain; Antarctica; Deception Island; South Shetland Islands
Año:2012
Volumen:155-156
Página de inicio:88
Página de fin:95
DOI: http://dx.doi.org/10.1016/j.geomorph.2011.12.027
Título revista:Geomorphology
Título revista abreviado:Geomorphology
ISSN:0169555X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0169555X_v155-156_n_p88_Melo

Referencias:

  • Ballantyne, C.K., Harris, C., (1994) The Periglaciation of Great Britain, p. 330. , Cambridge University Press, Cambridge
  • Barry, R.G., (1992) Mountain Weather and Climate, p. 402. , Routledge, London
  • Benn, D.I., Evans, D.J.A., (1998) Glaciers & Glaciation, p. 734. , Arnold Publishers, London
  • Carlston, C.W., Drainage density and streamflow (1963) USGS Professional Paper 422-C, p. 8
  • Chung, C.-J., Fabbri, A., Validation of spatial prediction models for landslide hazard mapping (2003) Natural Hazards, 30, pp. 451-472
  • Corripio, J.G., Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain (2003) International Journal of Geographical Information Science, 17, pp. 1-23
  • Cousins, C.R., Crawford, I.A., Volcano-ice interaction as a microbial habitat on Earth and Mars (2011) Astrobiology, 11, pp. 695-710
  • Etzelmüller, B., Ødegård, R.S., Berthling, I., Sollid, J.L., Terrain parameters and remote sensing data in the analysis of permafrost distribution and periglacial processes: principles and examples from southern Norway (2001) Permafrost and Periglacial Processes, 12, pp. 79-92
  • Gallant, J.C., Wilson, J.P., Primary topographic attributes (2000) Principles and Applications, pp. 51-85. , Wiley, New York, J.P. Wilson, J.C. Gallant (Eds.) Terrain Analysis
  • Gruber, S., Hoelzle, M., Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data (2001) Permafrost and Periglacial Processes, 12, pp. 69-77
  • Hjort, J., (2006) Environmental Factors Affecting the Occurrence of Periglacial Landforms in Finnish Lapland: A Numerical Approach, p. 162. , Shaker Verlag, Aachen
  • Hjort, J., Luoto, M., Seppälä, M., Landscape scale determinants of periglacial features in subarctic Finland: a grid-based modelling approach (2007) Permafrost and Periglacial Processes, 18, pp. 115-127
  • Humlum, O., Holocene permafrost aggradation in Svalbard (2005) Cryospheric Systems: Glaciers and Permafrost, 242, pp. 119-130. , Geological Society, London, Special publication, C. Harris, J.B. Murton (Eds.)
  • Inoue, M., Factors influencing the existence of lichens in the ice-free areas near Syowa Station, East Antarctica (1989) Proceedings of the NlPR Symposium on Polar Biology, 2, pp. 167-180
  • Janke, J.R., Modeling past and future alpine permafrost distribution in the Colorado Front Range (2005) Earth Surface Processes and Landforms, 30, pp. 1495-1508
  • Kappen, L., Some aspects of the great success of lichens in Antarctica (2000) Antarctic Science, 12, pp. 314-324
  • Kellerer-Pirklbauer, A., Farbrot, H., Etzelmüller, B., Permafrost aggradation caused by tephra accumulation over snow-covered surfaces: examples from the Hekla-2000 eruption in Iceland (2007) Permafrost and Periglacial Processes, 18, pp. 269-284
  • Luoto, M., Hjort, J., Generalized linear models in periglacial studies: terrain parameters and patterned ground (2004) Permafrost and Periglacial Processes, 15, pp. 327-338
  • Marshall, G.J., Lagun, V., Lachlan-Cope, T.A., Changes in Antarctic Peninsula tropospheric temperatures from 1956 to 1999: a synthesis of observations and reanalysis data (2002) International Journal of Climatology, 22, pp. 291-310
  • Melo, R., (2009), p. 152. , Present-day geomorphological dynamics of Deception Island (Maritime Antarctic): spatial analysis of the Cerro Caliente - Crater Lake area. Masters thesis in Physical Geography and Spatial Planning, University of Lisbon, (in Portuguese); Meredith, M.P., King, J.C., Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century (2005) Geophysical Research Letters, 32, pp. L19604
  • Ridefelt, H., Etzelmüller, B., Boelhouwers, J., Jonasson, C., Statistic-empirical modelling of mountain permafrost distribution in the Abisko region, sub-Arctic northern Sweden (2008) Norwegian Journal of Geography, 62, pp. 278-289
  • Selby, M.J., (1993) Hillslope Materials and Processes, p. 451. , Oxford University Press, New York
  • Smellie, J.L., Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands (2001) Antarctic Science, 13, pp. 188-209
  • Smellie, J.L., López-Martínez, J., (2000) Geological Map of Deception Island. BAS Geomap Series, Sheet 6-A, , British Antarctic Survey, Cambridge
  • Smellie, J.L., López-Martínez, J., Introduction to the geology and geomorphology of Deception Island (2002) BAS Geomap Series, pp. 1-6. , British Antarctic Survey, Cambridge, J. López-Martínez, J.L. Smellie, J.W. Thomson, M.R.A. Thomson (Eds.)
  • Sørensen, R., Zinko, U., Seibert, J., On the calculation of the topographic wetness index: evaluation of different methods based on field observations (2006) Hydrology and Earth System Sciences, 10, pp. 101-112
  • Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Iagovkina, S., Antarctic climate change during the last 50years (2005) International Journal of Climatology, 25, pp. 279-294
  • Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., Poesen, J., Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium (2009) Natural Hazards and Earth System Sciences, 9, pp. 507-521
  • Vieira, G., Lopez-Martinez, J., Serrano, E., Ramos, M., Gruber, S., Hauck, C., Blanco, J.J., Geomorphological observations of permafrost and ground-ice degradation on Deception and Livingston islands, Maritime Antarctica (2008) NICOP 2008. Ninth International Conference on Permafrost, pp. 1839-1844. , University Alaska, Fairbanks, D.L. Kane, K.M. Hinkel (Eds.)
  • Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A.A., Boelhouwers, J., Cannone, N., Wagner, D., Thermal State of permafrost and active-layer monitoring in the Antarctic: advances during the International Polar Year 2007-09 (2010) Permafrost and Periglacial Processes, 21, pp. 182-197
  • Yin, K.L., Yan, T.Z., Statistical preditiction model for slope instability of metamorphosed rocks (1988) Proceedings 5th International Symposium in Landslides, Lausanne, 2, pp. 1269-1272. , Balkema, Rotterdam, Netherlands, C. Bonnard (Ed.)
  • Zêzere, J.L., Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal) (2002) Natural Hazards and Earth System Sciences, 2, pp. 73-82

Citas:

---------- APA ----------
Melo, R., Vieira, G., Caselli, A. & Ramos, M. (2012) . Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic Peninsula). Geomorphology, 155-156, 88-95.
http://dx.doi.org/10.1016/j.geomorph.2011.12.027
---------- CHICAGO ----------
Melo, R., Vieira, G., Caselli, A., Ramos, M. "Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic Peninsula)" . Geomorphology 155-156 (2012) : 88-95.
http://dx.doi.org/10.1016/j.geomorph.2011.12.027
---------- MLA ----------
Melo, R., Vieira, G., Caselli, A., Ramos, M. "Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic Peninsula)" . Geomorphology, vol. 155-156, 2012, pp. 88-95.
http://dx.doi.org/10.1016/j.geomorph.2011.12.027
---------- VANCOUVER ----------
Melo, R., Vieira, G., Caselli, A., Ramos, M. Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic Peninsula). Geomorphology. 2012;155-156:88-95.
http://dx.doi.org/10.1016/j.geomorph.2011.12.027