Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The dissolution mechanism of pure and Cr-substituted, synthetic goethites with different aging times, as well as the changes in morphology, crystallinity and structural changes, were investigated. The Cr-goethites were obtained by synthesizing goethite in solutions that contained different concentrations of Cr(III) ions. The obtained suspensions were aged in the parent solutions for different time spans. Two samples of pure goethites, prepared using different KOH concentrations, were also studied for comparative purposes. Chemical analyses showed that Cr-for-Fe substitution was greatest in samples aged for longer time. Rietveld simulation of XRD powder data indicated that the unit cell parameters of pure goethite increased for samples prepared at a higher KOH concentration, and decreased with Cr-incorporation. Simulation also showed that the mean coherence path dimension (MCP), or crystallite size, in the direction perpendicular to crystal plane (110), did not change much in the samples, whereas the crystallite size in the direction parallel to crystal plane (110) increased with Cr-content, KOH concentration and aging time. The obtained MCP values indicate an increasing elongated form in the domains. Chromium substituted goethites presented a good capacity for immobilizating Cr when the dissolution rates were studied in 3.98M HCl, 0.10M oxalic acid (H 2Oxal), and reductive media (H 2Oxal/Fe(II)). The shape of the f vs. t profile, where f stands for the fraction of Fe dissolved (dissolved Fe mass/total Fe mass) and t refers to the dissolution time, follows a contracting bidimensional model, and when dissolved in similar acid concentrations, the reactivity follows the trend HCl<H 2Oxal≪H 2Oxal/Fe(II), indicating that dissolution is noticeably increased in complexing-reducing media. The dissolution rate constant k values were highly depend on crystallite size, and the dissolution rate decreased in the samples aged longest and in goethites containing higher concentrations of Cr. The release of Fe and Cr is congruent and shows a homogeneous distribution of Fe and Cr in the samples. The calculated activation energies values support a surface reaction control for the dissolution process. © 2012 Elsevier B.V.

Registro:

Documento: Artículo
Título:Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition
Autor:Tufo, A.E.; Sileo, E.E.; Morando, P.J.
Filiación:INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires, Argentina
Instituto de Tecnología J. Sábato, Universidad Nacional de San Martín, Avenida Gral. Paz 1499, 1650 San Martín, Provincia de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
Palabras clave:Acid dissolution; Cr-goethite; Crystallite size; Lattice parameters; Reductive dissolution; Acid concentrations; Acid dissolution; Aging time; Cr-goethite; CrIII ions; Crystal planes; Crystallinities; Dissolution mechanism; Dissolution process; Dissolution rates; Dissolution time; Homogeneous distribution; KOH concentration; Oxalic Acid; Reductive dissolution; Rietveld; Structural change; Surface reaction control; Time span; Unit cell parameters; XRD; Activation energy; Chemical analysis; Chromium; Chromium compounds; Crystallite size; Dissolution; Lattice constants; Optical glass; Organic acids; Rate constants; Structural metals; Synthetic metals; activation energy; chemical analysis; chromium; crystal structure; dissolution; goethite; immobilization; lattice dynamics; Rietveld analysis; substitution
Año:2012
Volumen:58
Página de inicio:88
Página de fin:95
DOI: http://dx.doi.org/10.1016/j.clay.2012.01.018
Título revista:Applied Clay Science
Título revista abreviado:Appl. Clay Sci.
ISSN:01691317
CODEN:ACLSE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01691317_v58_n_p88_Tufo

Referencias:

  • Alvarez, M., Rueda, E.H., Sileo, E.E., Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites (2006) Chemical Geology, 231, pp. 288-299
  • Alvarez, M., Rueda, E.H., Sileo, E.E., Simultaneous incorporation of Mn and Al in the goethite structure (2007) Geochimica et Cosmochimica Acta, 71, pp. 1009-1020
  • Alvarez, M., Sileo, E.E., Rueda, E.H., Structure and reactivity of synthetic Co-substituted goethites (2008) American Mineralogist, 93, pp. 584-590
  • Baes, C.F., Mesmer, R.E., (1976) The Hydrolysis of Cations, , Wiley
  • Banks, M.K., Schwab, A.P., Henderson, C., Leaching and reduction of chromium in soil as affected by soil organic content and plants (2006) Chemosphere, 62, pp. 255-264
  • Baumgartner, E., Blesa, M.A., Maroto, A.J.G., Kinetics of the dissolution of magnetite in thioglycolic acid solutions (1982) Journal of the Chemical Society Dalton Transactions, pp. 1649-1654
  • Baumgartner, E., Blesa, M.A., Marinovich, H., Maroto, A.J.G., Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions (1983) Inorganic Chemistry, 22, pp. 2224-2226
  • Blesa, M.A., Marinovich, H.A., Baumgartner, E.C., Maroto, A.J.G., Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions (1987) Inorganic Chemistry, 26, pp. 3713-3717
  • Blesa, M.A., Morando, P.J., Regazzoni, A.E., (1994) Chemical Dissolution of Metal Oxides, , CRC Press. Inc, Boca Raton, Fla., USA
  • Blesa, M.A., Weisz, A.D., Morando, P.J., Salfity, J.A., Magaz, G.E., Regazzoni, A.E., The interaction of metal oxide surfaces with complexing agents dissolved in water (2000) Coordination Chemistry Reviews, 196, pp. 31-63
  • Borghi, E.B., Regazzoni, A.E., Maroto, A.J.G., Blesa, M.A., Reductive dissolution of magnetite by solutions containing EDTA and Fe II (1989) Journal of Colloid and Interface Science, 130, pp. 299-310
  • Brown, W.E., Dollimore, D., Galwey, A., (1980) Reactions in the Solid State, Comprehensive Chemical Kinetics, 22. , Elsevier, Amsterdam, C.H. Bamford, C.F.H. Tipper (Eds.)
  • Carvalho-e-Silva, M.L., Ramos, A.Y., Tolentino, H.C.N., Enzweiler, J., Netto, S.M., Martins Alves, M.C., Incorporation of Ni into natural goethite: an investigation by X-ray absorption spectroscopy (2003) American Mineralogist, 88, pp. 876-882
  • Cornell, R.M., Schwertmann, U., (1996) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, , VCH, Weinheim, Federal Republic of Germany
  • Cotton, F.A., Wilkinson, G., (1988) Advanced Inorganic Chemistry, , Wiley, New York, USA
  • Cummings, D.A., March, A.W., Bostick, B., Spring, S., Caccavo, F., Fendorf, S., Frank, R.R., Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho) (2000) Applied and Environment Microbiology, 66, pp. 154-162
  • dos Santos Afonso, M., Morando, P.J., Blesa, M.A., Banwart, S., Stumm, W., The reductive dissolution of iron oxides by ascorbate (1990) Journal of Colloid and Interface Science, 138, pp. 74-82
  • Figueroa, C.A., Sileo, E.E., Morando, P.J., Blesa, M.A., Dissolution of nickel ferrites in aqueous solutions containing oxalic acid and ferrous salts (2000) Journal of Colloid and Interface Science, 225, pp. 403-410
  • García Rodenas, L.A., Blesa, M.A., Morando, P.J., Reactivity of metal oxides: thermal and photochemical dissolution of MO and MFe 2O 4 (M=Ni, Co, Zn) (2008) Journal of Solid State Chemistry, 181, pp. 2350-2358
  • Gasser, U.G., Nuesch, R., Singer, M.J., Jeanroy, E., Distribution of manganese in synthetic goethite (1999) Clay Minerals, 34, pp. 291-299
  • Gerth, J., Unit-cell dimensions of pure and trace metal-associated goethites (1990) Geochimica et Cosmochimica Acta, 54, pp. 363-371
  • Hingston, J.A., Collins, C.D., Murphy, R.J., Lester, J.N., Leaching of chromated copper arsenate wood preservatives: a review (2001) Environmental Pollution, 111, pp. 53-56
  • Kabai, J., Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution (1973) Acta Chimica Academiae Scientiarum Hungaricae, 78, pp. 57-73
  • Kaur, N., Singh, B., Kennedy, B.J., Gräfe, M., The preparation and characterization of vanadium substituted goethite: the importance of temperature (2009) Geochimica et Cosmochimica Acta, 73, pp. 582-593
  • Kaur, N., Gräfe, M., Singh, B., Kennedy, B.J., Simultaneous incorporation of Cr, Zn, Cd and Pb in the goethite structure (2009) Clays and Clay Minerals, 57, pp. 234-250
  • Kaur, N., Singh, B., Kennedy, B.J., Copper substitution alone and in the presence of chromium, zinc, cadmium and lead in goethite (α-FeOOH) (2009) Clay Minerals, 44, pp. 293-310
  • Kaur, N., Singh, B., Kennedy, B.J., Dissolution of Cr, Cd, Zn and Pb single- and multi-metal substituted goethite; relation to structural, morphological, and dehydroxylation properties (2010) Clays and Clay Minerals, 58, pp. 415-430
  • Khan, B.I., Solo-Gabriele, H.M., Townsend, T.G., Cai, Y., Release of arsenic to the environment from CCA-treated wood. 1. Leaching and speciation during service (2006) Environmental Science and Technology, 40, pp. 988-993
  • Laidler, K.J., (1964) Chemical Kinetics, , McGraw-Hill, New York
  • Larson, A.C., Von Dreele, R.B., (1994) General structure analysis system (GSAS, Los Alamos National Laboratory Report LAUR 86-748
  • Leussing, D.L., Newman, L., Spectrophotometric study of the bleaching of ferric thioglycolate. spectrophotometric study of the bleaching of ferric thioglycolate (1956) Journal of the American Chemical Society, 78, pp. 552-556
  • Lewis, D.G., Schwertmann, U., The influence of Al on iron oxides. Part III. Preparation of Al goethites in 1 M KOH (1979) Clay Minerals, 23, pp. 115-126
  • Lim-Nunez, R., Gilkes, R.J., Acid dissolution of synthetic metal-containing goethite and hematites (1987) Proceedings of the International Clay Conference, Clay Minerals Society of America, Denver, pp. 197-204
  • Lovley, D.R., Holmes, D.E., Nevin, K.P., Dissimilatory Fe(III) and Mn(IV) reduction (2004) Advances in Microbial Physiology, 49, pp. 219-286. , Elsevier, Amsterdam
  • Manceau, A., Schlegel, M.L., Musso, M., Sole, V.A., Gauthier, C., Petit, P.E., Trolard, F., Crystal chemistry of trace elements in natural and synthetic goethite (1999) Geochimica et Cosmochimica Acta, 64, pp. 3643-3661
  • Milton, C., Appleman, D.E., Appleman, M.H., Chao, E.C.T., Guttita, F., Dinnin, J.D., Dwornik, E.J., Rose, H.J., Merumite, a complex assemblage of chromium minerals from Guyana (1976) Geological Survey Professional Paper, 887, pp. 1-29
  • Murad, E., Schwertmann, U., The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite (1983) Clay Minerals, 18, pp. 301-312
  • Norrish, K., Geochemistry and mineralogy of trace elements (1975) Trace Elements in Soil-Plant-Animal System, pp. 55-81. , Academic Press, New York, A.R. Nicholas, D.J. Egan (Eds.)
  • Persson, P., Axe, K., Adsorption of oxalate and malonate at the water-goethite interface: molecular surface speciation from IR spectroscopy (2005) Geochimica et Cosmochimica Acta, 69, pp. 541-552
  • Pilling, M.J., Seakins, P.W., (1995) Reaction Kinetics, , Oxford University Press, New York
  • Pozas, R., Rojas, C.T., Ocana, M., Serna, C.J., The nature of Co in synthetic Co-substituted goethites (2004) Clays and Clay Minerals, 52, pp. 760-766
  • Rasem Hasan, A., Hub, L., Solo-Gabriele, H.M., Fieber, L., Cai, Y., Townsend, T.G., Field-scale leaching of arsenic, chromium and copper from weathered treated wood (2010) Environmental Pollution, 158, pp. 1479-1486
  • Ruan, H.D., Gilkes, R.J., Dehydroxylation of aluminous goethite: unit cell dimensions, crystal size and surface area (1995) Clays and Clay Minerals, 43, pp. 196-211
  • Schwertmann, U., The influence of aluminum on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl (1984) Clay Minerals, 22, pp. 83-92
  • Schwertmann, U., Cornell, R.M., (2000) Iron Oxides in the Laboratory, Preparation and Characterization, , Wiley-VCH, Weinheim, Germany
  • Schwertmann, U., Taylor, R.M., Iron oxides (1989) Minerals in Soil Environments, pp. 380-438. , Soil Sci. Soc Am., Madison, WI, J.B. Dixon, S.B. Weed (Eds.)
  • Schwertmann, U., Gasser, U., Sticher, H., Chromium-for iron substitution in synthetic goethites (1989) Geochimica et Cosmochimica Acta, 53, pp. 1293-1297
  • Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system (2001) International Journal of Inorganic Materials, 3, pp. 271-279
  • Sileo, E.E., Ramos, A.Y., Magaz, G., Blesa, M.A., Long-range vs. short-range ordering in synthetic Cr-substituted goethites (2004) Geochimica et Cosmochimica Acta, 68, pp. 3053-3063
  • Sileo, E.E., Garcia Rodenas, L., Paiva Santos, C.O., Stephens, P.W., Morando, P.J., Blesa, M.A., Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites (2006) Journal of Solid State Chemistry, 179, pp. 2237-2244
  • Singh, B., Gilkes, R.J., Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia (1992) Journal of Soil Science, 43, pp. 77-98
  • Singh, B., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): Mechanism from extended X-ray absorption fine structure spectroscopy (2002) Clay Minerals, 37, pp. 639-649
  • Singh, B., Grafe, M., Kaur, N., Liese, A., Applications of Synchrotron-based X-ray diffraction and X-ray absorption spectroscopy to the understanding of poorly crystalline and metal-substituted iron oxides (2010) Balwant Singh and Markus Gräfe: Developments in Soil Science, 34, pp. 199-254. , Elsevier B.V., The Netherlands
  • Skovbjerg, L.L., Stipp, S.L.S., Utsunomiya, S., Ewing, R.C., The mechanism of reduction of hexavalent chromium by green rust sodium sulphate: formation of Cr-goethite (2006) Geochimica et Cosmochimica Acta, 70, pp. 3582-3592
  • Sparks, D.L., (2003) Environmental Soil Chemistry, , Academic Press, San Diego, CA
  • Spiro, M., (1989) Reactions at the Liquid-solid Interface, Chemical Kinetics, 28. , Elsevier, Amsterdam, R.G. Compton (Ed.)
  • Stiers, W., Schwertmann, U., Evidence for manganese substitution in synthetic goethite (1985) Geochimica et Cosmochimica Acta, 49, pp. 1909-1911
  • Stone, A.T., Adsorption of organic reductants and subsequent electron transfer on metal oxide surfaces (1986) SSSA Spec. Publ., 27. , Soil Sci. Soc. Am., Madison, WI, D.L. Sparks, D.L. Suarez (Eds.) Rates of Soil Chemical Processes
  • Stumm, W., Morgan, J.J., (1995) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, , Wiley-Interscience Pub., USA
  • Su, C., Puls, R.W., Kinetics of Trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products (1999) Environmental Science and Technology, 33, pp. 163-168
  • Suter, D., Siffert, C., Sulzberger, B., Stumm, W., Catalytic dissolution of iron(III) (hydr)oxides by oxalic acid in the presence of Fe(II) (1988) Die Naturwissenschaften, 75, pp. 571-573
  • Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Physica Status Solidi, 26, pp. 429-434
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al 2O 3 (1987) Journal of Applied Crystallography, 20, pp. 79-83
  • Toby, B.H., EXPGUI, a graphical user interface for GSAS (2001) Journal of Applied Crystallography, 34, pp. 210-213
  • (1998) Toxicological Review of Hexavalent Chromium, , U.S. Environmental Protection Agency, Washington, DC, U.S. EPA
  • Western Australian Quality Guidelines for Fresh and Marine Water (1993) EPA Bulletin N° 711, , Western Australian Environmental Protection Authority, Perth, W.A. EPA
  • Weber, K.A., Achenbach, L.A., Coates, J.D., Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction (2006) Nature Reviews Microbiology, 4 (10), pp. 752-764
  • Wells, M.A., Mineral, chemical and magnetic properties of synthetic, metal substituted goethite and hematite (1998), PhD Thesis. Faculty of Natural and Agricultural Sciences, University of Western Australia; Wells, M.A., Fitzpatrick, R.W., Gilkes, R.J., Thermal and mineral properties of Al-, Cr-, Ni- and Ti-substituted goethite (2006) Clays and Clay Minerals, 54, pp. 176-194
  • Williams, A.G.B., Scherer, M.M., Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface (2004) Environmental Science and Technology, 38, pp. 4782-4790

Citas:

---------- APA ----------
Tufo, A.E., Sileo, E.E. & Morando, P.J. (2012) . Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition. Applied Clay Science, 58, 88-95.
http://dx.doi.org/10.1016/j.clay.2012.01.018
---------- CHICAGO ----------
Tufo, A.E., Sileo, E.E., Morando, P.J. "Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition" . Applied Clay Science 58 (2012) : 88-95.
http://dx.doi.org/10.1016/j.clay.2012.01.018
---------- MLA ----------
Tufo, A.E., Sileo, E.E., Morando, P.J. "Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition" . Applied Clay Science, vol. 58, 2012, pp. 88-95.
http://dx.doi.org/10.1016/j.clay.2012.01.018
---------- VANCOUVER ----------
Tufo, A.E., Sileo, E.E., Morando, P.J. Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition. Appl. Clay Sci. 2012;58:88-95.
http://dx.doi.org/10.1016/j.clay.2012.01.018