Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5′ SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5′ SS, whereas the RNAPII-associated U2AF65 binds the upstream 3′ SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing. © 2016 Elsevier Ltd

Registro:

Documento: Artículo
Título:How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?
Autor:Hollander, D.; Naftelberg, S.; Lev-Maor, G.; Kornblihtt, A.R.; Ast, G.
Filiación:Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Israel
IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EHA, Argentina
Palabras clave:RNA polymerase II; small nuclear ribonucleoprotein; RNA polymerase II; small nuclear ribonucleoprotein; splicing factor U2AF; U2AF2 protein, human; carboxy terminal sequence; chromatin; chromatin structure; exon; genetic model; genetic transcription; human; in vivo study; intron; kinetics; length; molecular evolution; priority journal; Review; RNA binding; RNA splicing; RNA synthesis; spliceosome; exon; genetics; intron; RNA splicing; Chromatin; Exons; Humans; Introns; Ribonucleoprotein, U1 Small Nuclear; Ribonucleoproteins, Small Nuclear; RNA Polymerase II; RNA Splicing; Spliceosomes; Splicing Factor U2AF
Año:2016
Volumen:32
Número:10
Página de inicio:596
Página de fin:606
DOI: http://dx.doi.org/10.1016/j.tig.2016.07.003
Título revista:Trends in Genetics
Título revista abreviado:Trends Genet.
ISSN:01689525
CODEN:TRGEE
CAS:Chromatin; Ribonucleoprotein, U1 Small Nuclear; Ribonucleoproteins, Small Nuclear; RNA Polymerase II; Splicing Factor U2AF; U2AF2 protein, human
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689525_v32_n10_p596_Hollander

Referencias:

  • Black, D.L., Mechanisms of alternative pre-messenger RNA splicing (2003) Annu. Rev. Biochem., 72, pp. 291-336
  • Kalsotra, A., Cooper, T.A., Functional consequences of developmentally regulated alternative splicing (2011) Nat. Rev. Genet., 12, pp. 715-729
  • Cartegni, L., Listening to silence and understanding nonsense: exonic mutations that affect splicing (2002) Nat. Rev. Genet., 3, pp. 285-298
  • Sibley, C.R., Lessons from non-canonical splicing (2016) Nat. Rev. Genet., 17, pp. 407-421
  • Wahl, M.C., Luhrmann, R., SnapShot: spliceosome dynamics I (2015) Cell, 161, pp. 1474-1481
  • Krainer, A.R., Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro (1984) Cell, 36, pp. 993-1005
  • Luhrmann, R., Structure of spliceosomal snRNPs and their role in pre-mRNA splicing (1990) Biochim. Biophys. Acta, 1087, pp. 265-292
  • Black, D.L., U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing (1985) Cell, 42, pp. 737-750
  • Mount, S.M., The U1 small nuclear RNA–protein complex selectively binds a 5′ splice site in vitro (1983) Cell, 33, pp. 509-518
  • Bell, M.V., Influence of intron length on alternative splicing of CD44 (1998) Mol. Cell. Biol., 18, pp. 5930-5941
  • Fox-Walsh, K.L., The architecture of pre-mRNAs affects mechanisms of splice-site pairing (2005) Proc. Natl Acad. Sci. U.S.A., 102, pp. 16176-16181
  • Kim, E., Different levels of alternative splicing among eukaryotes (2007) Nucleic Acids Res., 35, pp. 125-131
  • Gelfman, S., Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons (2012) Genome Res., 22, pp. 35-50
  • Khodor, Y.L., Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse (2012) RNA, 18, pp. 2174-2186
  • Shcherbakova, I., Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy (2013) Cell Rep., 5, pp. 151-165
  • Singh, J., Padgett, R.A., Rates of in situ transcription and splicing in large human genes (2009) Nat. Struct. Mol. Biol., 16, pp. 1128-1133
  • Schwartz, S.H., Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes (2008) Genome Res., 18, pp. 88-103
  • Irimia, M., Coevolution of genomic intron number and splice sites (2007) Trends Genet., 23, pp. 321-325
  • Hawkins, J.D., A survey on intron and exon lengths (1988) Nucleic Acids Res., 16, pp. 9893-9908
  • De Conti, L., Exon and intron definition in pre-mRNA splicing (2013) Wiley Interdiscip. Rev. RNA, 4, pp. 49-60
  • Reed, R., Maniatis, T., A role for exon sequences and splice-site proximity in splice-site selection (1986) Cell, 46, pp. 681-690
  • Reichert, V., Moore, M.J., Better conditions for mammalian in vitro splicing provided by acetate and glutamate as potassium counterions (2000) Nucleic Acids Res., 28, pp. 416-423
  • Wada, Y., A wave of nascent transcription on activated human genes (2009) Proc. Natl Acad. Sci. U.S.A., 106, pp. 18357-18361
  • Huranova, M., The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells (2010) J. Cell Biol., 191, pp. 75-86
  • Schmidt, U., Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation (2011) J. Cell Biol., 193, pp. 819-829
  • Coulon, A., Kinetic competition during the transcription cycle results in stochastic RNA processing (2014) Elife., 3, p. e03939
  • Martin, R.M., Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity (2013) Cell Rep., 4, pp. 1144-1155
  • Saldi, T., Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing (2016) J. Mol. Biol., 428, pp. 2623-2635
  • Carrillo Oesterreich, F., Splicing of nascent RNA coincides with intron exit from RNA polymerase II (2016) Cell, 165, pp. 372-381
  • Bhatt, D.M., Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions (2012) Cell, 150, pp. 279-290
  • Tilgner, H., Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs (2012) Genome Res., 22, pp. 1616-1625
  • Brodsky, A.S., Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells (2005) Genome Biol., 6, p. R64
  • Adelman, K., Lis, J.T., Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans (2012) Nat. Rev. Genet., 13, pp. 720-731
  • Kwak, H., Precise maps of RNA polymerase reveal how promoters direct initiation and pausing (2013) Science, 339, pp. 950-953
  • Veloso, A., Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications (2014) Genome Res., 24, pp. 896-905
  • Jonkers, I., Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons (2014) Elife, 3, p. e02407
  • Nojima, T., Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing (2015) Cell, 161, pp. 526-540
  • Mayer, A., Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution (2015) Cell, 161, pp. 541-554
  • Bird, G., RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation (2004) Mol. Cell. Biol., 24, pp. 8963-8969
  • Millhouse, S., Manley, J.L., The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein (2005) Mol. Cell. Biol., 25, pp. 533-544
  • de la Mata, M., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532
  • Fong, N., Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate (2014) Genes Dev., 28, pp. 2663-2676
  • Kornblihtt, A.R., Alternative splicing: a pivotal step between eukaryotic transcription and translation (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 153-165
  • Dujardin, G., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol. Cell, 54, pp. 683-690
  • Jimeno-Gonzalez, S., Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing (2015) Proc. Natl Acad. Sci. U.S.A., 112, pp. 14840-14845
  • Gelfman, S., DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon–intron structure (2013) Genome Res., 23, pp. 789-799
  • Schwartz, S., Chromatin organization marks exon–intron structure (2009) Nat. Structural Mol. Biol., 16, pp. 990-995
  • Tilgner, H., Nucleosome positioning as a determinant of exon recognition (2009) Nat. Struct. Mol. Biol., 16, pp. 996-1001
  • Maunakea, A.K., Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition (2013) Cell Res., 23, pp. 1256-1269
  • Kolasinska-Zwierz, P., Differential chromatin marking of introns and expressed exons by H3K36me3 (2009) Nat. Genet., 41, pp. 376-381
  • Fuchs, G., Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate (2014) Genome Res., 24, pp. 1572-1583
  • Luco, R.F., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-1000
  • Schor, I.E., Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation (2013) EMBO J., 32, pp. 2264-2274
  • Schor, I.E., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl Acad. Sci. U.S.A., 106, pp. 4325-4330
  • Simon, J.M., Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects (2014) Genome Res., 24, pp. 241-250
  • Zhou, H.L., Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms (2014) Nucleic Acids Res., 42, pp. 701-713
  • Yearim, A., HP1 is involved in regulating the global impact of DNA methylation on alternative splicing (2015) Cell Rep., 10, pp. 1122-1134
  • Iannone, C., Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells (2015) RNA, 21, pp. 360-374
  • Agirre, E., A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins (2015) BMC Biol., 13, p. 31
  • Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage (2004) RNA, 10, pp. 581-589
  • de la Mata, M., Kornblihtt, A.R., RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 (2006) Nat. Struct. Mol. Biol., 13, pp. 973-980
  • Hsin, J.P., Manley, J.L., The RNA polymerase II CTD coordinates transcription and RNA processing (2012) Genes Dev., 26, pp. 2119-2137
  • Bentley, D.L., Coupling mRNA processing with transcription in time and space (2014) Nat. Rev. Genet., 15, pp. 163-175
  • Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol. Cell, 3, pp. 697-705
  • Gu, B., CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo (2013) Nucleic Acids Res., 41, pp. 1591-1603
  • Tian, H., RNA ligands generated against complex nuclear targets indicate a role for U1 snRNP in co-ordinating transcription and RNA splicing (2001) FEBS Lett., 509, pp. 282-286
  • Das, R., SR proteins function in coupling RNAP II transcription to pre-mRNA splicing (2007) Mol. Cell, 26, pp. 867-881
  • Jobert, L., Human U1 snRNA forms a new chromatin-associated snRNP with TAF15 (2009) EMBO Rep., 10, pp. 494-500
  • Spiluttini, B., Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells (2010) J. Cell Sci., 123, pp. 2085-2093
  • Brody, Y., The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing (2011) PLoS Biol., 9, p. e1000573
  • Yu, Y., Reed, R., FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP (2015) Proc. Natl Acad. Sci. U.S.A., 112, pp. 8608-8613
  • Harlen, K.M., Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue (2016) Cell Rep., 15, pp. 2147-2158
  • Engreitz, J.M., RNA–RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites (2014) Cell, 159, pp. 188-199
  • Berg, M.G., U1 snRNP determines mRNA length and regulates isoform expression (2012) Cell, 150, pp. 53-64
  • Masuda, A., FUS-mediated regulation of alternative RNA processing in neurons: insights from global transcriptome analysis (2016) Wiley Interdiscip. Rev. RNA, 7, pp. 330-340
  • David, C.J., The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65–Prp19 complex (2011) Genes Dev., 25, pp. 972-983
  • Robert, F., A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly (2002) J. Biol. Chem., 277, pp. 9302-9306
  • Ujvari, A., Luse, D.S., Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II (2004) J. Biol. Chem., 279, pp. 49773-49779
  • Schor, I.E., Perturbation of chromatin structure globally affects localization and recruitment of splicing factors (2012) PLoS One, 7, p. e48084
  • Sanchez-Alvarez, M., Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions (2006) Mol. Cell. Biol., 26, pp. 4998-5014
  • Goldstrohm, A.C., The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1 (2001) Mol. Cell. Biol., 21, pp. 7617-7628
  • Liu, J., Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat (2013) J. Biol. Chem., 288, pp. 10890-10901
  • Sanchez-Hernandez, N., The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing (2016) RNA, 22, pp. 571-582
  • Sims, R.J., III, Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing (2007) Mol. Cell, 28, pp. 665-676
  • Pray-Grant, M.G., Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation (2005) Nature, 433, pp. 434-438
  • Martinez, E., Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo (2001) Mol. Cell. Biol., 21, pp. 6782-6795
  • Amit, M., Differential GC content between exons and introns establishes distinct strategies of splice-site recognition (2012) Cell Rep., 1, pp. 543-556
  • Kfir, N., SF3B1 association with chromatin determines splicing outcomes (2015) Cell Rep., 11, pp. 618-629
  • Wang, C., Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis (1998) Genes Dev., 12, pp. 1409-1414
  • Bessonov, S., Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis (2010) RNA, 16, pp. 2384-2403
  • Girard, C., Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion (2012) Nat. Commun., 3, p. 994
  • Batsche, E., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat. Struct. Mol. Biol., 13, pp. 22-29
  • Guo, R., BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing (2014) Mol. Cell, 56, pp. 298-310
  • Kalashnikova, A.A., Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus (2013) Nucleic Acids Res., 41, pp. 4026-4035
  • Berget, S.M., Exon recognition in vertebrate splicing (1995) J. Biol. Chem., 270, pp. 2411-2414
  • Hiller, M., Pre-mRNA secondary structures influence exon recognition (2007) PLoS Genet., 3, p. e204
  • Chen, M., Manley, J.L., Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 741-754
  • Fu, X.D., Ares, M., Jr., Context-dependent control of alternative splicing by RNA-binding proteins (2014) Nat. Rev. Genet., 15, pp. 689-701
  • Kuo, H.C., Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle (1991) Science, 251, pp. 1045-1050
  • Krawczak, M., Single base-pair substitutions in exon–intron junctions of human genes: nature, distribution, and consequences for mRNA splicing (2007) Hum. Mutat., 28, pp. 150-158
  • Duff, M.O., Genome-wide identification of zero nucleotide recursive splicing in Drosophila (2015) Nature, 521, pp. 376-379
  • Kelly, S., Splicing of many human genes involves sites embedded within introns (2015) Nucleic Acids Res., 43, pp. 4721-4732
  • Sibley, C.R., Recursive splicing in long vertebrate genes (2015) Nature, 521, pp. 371-375
  • Dye, M.J., Exon tethering in transcription by RNA polymerase II (2006) Mol. Cell, 21, pp. 849-859
  • Konig, J., iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution (2010) Nat. Struct. Mol. Biol., 17, pp. 909-915
  • Zarnack, K., Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements (2013) Cell, 152, pp. 453-466
  • Reed, R., Mechanisms of fidelity in pre-mRNA splicing (2000) Curr. Opin. Cell Biol., 12, pp. 340-345
  • Wahl, M.C., Luhrmann, R., SnapShot: spliceosome dynamics II (2015) Cell, 162, pp. 456-461
  • Sharma, S., Stem–loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly (2014) Genes Dev., 28, pp. 2518-2531
  • Will, C.L., Luhrmann, R., Spliceosome structure and function (2011) Cold Spring Harb. Perspect. Biol., 3, p. a003707
  • Robberson, B.L., Exon definition may facilitate splice site selection in RNAs with multiple exons (1990) Mol. Cell. Biol., 10, pp. 84-94
  • Romfo, C.M., Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe (2000) Mol. Cell. Biol., 20, pp. 7955-7970
  • Ast, G., How did alternative splicing evolve? (2004) Nat. Rev. Genet., 5, pp. 773-782
  • Collins, L., Penny, D., Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Investigating the intron recognition mechanism in eukaryotes (2006) Mol. Biol. Evol., 23, pp. 901-910
  • Hoffman, B.E., Grabowski, P.J., U1 snRNP targets an essential splicing factor, U2AF65, to the 3′ splice site by a network of interactions spanning the exon (1992) Genes Dev., 6, pp. 2554-2568
  • Singh, R., Valcarcel, J., Building specificity with nonspecific RNA-binding proteins (2005) Nat. Struct. Mol. Biol., 12, pp. 645-653
  • Schneider, M., Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes (2010) Mol. Cell, 38, pp. 223-235
  • Eick, D., Geyer, M., The RNA polymerase II carboxy-terminal domain (CTD) code (2013) Chem. Rev., 113, pp. 8456-8490
  • Wu, J., Chfr and RNF8 synergistically regulate ATM activation (2011) Nat. Struct. Mol. Biol., 18, pp. 761-768
  • Jerebtsova, M., Mass spectrometry and biochemical analysis of RNA polymerase II: targeting by protein phosphatase-1 (2011) Mol. Cell. Biochem., 347, pp. 79-87
  • Lin, S., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat. Struct. Mol. Biol., 15, pp. 819-826
  • Loomis, R.J., Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation (2009) Mol. Cell, 33, pp. 450-461
  • Fiszbein, A., Alternative splicing of G9a regulates neuronal differentiation (2016) Cell Rep., 14, pp. 2797-2808

Citas:

---------- APA ----------
Hollander, D., Naftelberg, S., Lev-Maor, G., Kornblihtt, A.R. & Ast, G. (2016) . How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?. Trends in Genetics, 32(10), 596-606.
http://dx.doi.org/10.1016/j.tig.2016.07.003
---------- CHICAGO ----------
Hollander, D., Naftelberg, S., Lev-Maor, G., Kornblihtt, A.R., Ast, G. "How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?" . Trends in Genetics 32, no. 10 (2016) : 596-606.
http://dx.doi.org/10.1016/j.tig.2016.07.003
---------- MLA ----------
Hollander, D., Naftelberg, S., Lev-Maor, G., Kornblihtt, A.R., Ast, G. "How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?" . Trends in Genetics, vol. 32, no. 10, 2016, pp. 596-606.
http://dx.doi.org/10.1016/j.tig.2016.07.003
---------- VANCOUVER ----------
Hollander, D., Naftelberg, S., Lev-Maor, G., Kornblihtt, A.R., Ast, G. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?. Trends Genet. 2016;32(10):596-606.
http://dx.doi.org/10.1016/j.tig.2016.07.003