Artículo

López-Fernández, M.P.; Burrieza, H.P.; Rizzo, A.J.; Martínez-Tosar, L.J.; Maldonado, S. "Cellular and molecular aspects of quinoa leaf senescence" (2015) Plant Science. 238:178-187
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4. C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. © 2015 .

Registro:

Documento: Artículo
Título:Cellular and molecular aspects of quinoa leaf senescence
Autor:López-Fernández, M.P.; Burrieza, H.P.; Rizzo, A.J.; Martínez-Tosar, L.J.; Maldonado, S.
Filiación:IBBEA (Instituto de Biodiversidad y Biología Experimental y Aplicada), CONICET (Consejo Nacional de Investigaciones Científicas Técnicas), Argentina
DBBE (Departamento de Biodiversidad y Biología Experimental), FCEN (Facultad de Ciencias Exactas y Naturales), UBA (Universidad de Buenos Aires), Ciudad Universitaria, Int. Güiraldes 2160C1428EGA, Argentina
Palabras clave:DNA fragmentation; Endoreduplication; Leaf senescence; Nucleases; Quinoa; Chenopodium quinoa; deoxyribonuclease; ribulosebisphosphate carboxylase; cell nucleus; Chenopodium quinoa; chloroplast; cytology; DNA fragmentation; flow cytometry; genetics; growth, development and aging; metabolism; plant leaf; ploidy; ultrastructure; Cell Nucleus; Chenopodium quinoa; Chloroplasts; Deoxyribonucleases; DNA Fragmentation; Flow Cytometry; Plant Leaves; Ploidies; Ribulose-Bisphosphate Carboxylase
Año:2015
Volumen:238
Página de inicio:178
Página de fin:187
DOI: http://dx.doi.org/10.1016/j.plantsci.2015.06.003
Título revista:Plant Science
Título revista abreviado:Plant Sci.
ISSN:01689452
CODEN:PLSCE
CAS:deoxyribonuclease, 37211-67-9; ribulosebisphosphate carboxylase, 9027-23-0; Deoxyribonucleases; Ribulose-Bisphosphate Carboxylase
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689452_v238_n_p178_LopezFernandez

Referencias:

  • Lim, P.O., Kim, H.J., Nam, H.G., Leaf senescence (2007) Annu. Rev. Plant Biol., 58, pp. 115-136
  • Avila-Ospina, L., Moison, M., Yoshimoto, K., Masclaux-Daubresse, C., Autophagy, plant senescence, and nutrient recycling (2014) J. Exp. Bot.
  • Dangl, J., Dietrich, R., Thomas, H., Senescence and programmed cell death (2000) Biochem. Mol. Biol. Plants, pp. 1044-1100. , American Society of Plant Physiologists, Rockville, Maryland, B. Buchanan, W. Gruissem, R. Jones (Eds.)
  • Cao, J., Jiang, F., Sodmergen, C.K., Time-course of programmed cell death during leaf senescence in Eucommia ulmoides (2003) J. Plant Res., 116, pp. 7-12
  • Uzelac, B., Janosević, D., Budimir, S., In situ detection of programmed cell death in Nicotiana tabacum leaves during senescence (2008) J. Microsc., 230, pp. 1-3
  • Domínguez, F., Cejudo, F.J., Programmed cell death (PCD): an essential process of cereal seed development and germination (2014) Front. Plant Sci., 5, pp. 1-11
  • Simeonova, E., Sikora, A., Charzyńska, M., Mostowska, A., Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants (2000) Protoplasma, 214, pp. 93-101
  • Sakamoto, W., Takami, T., Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence (2014) J. Exp. Bot.
  • Domínguez, F., Cejudo, F.J., Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells (2006) Biochem. J., 397, pp. 529-536
  • He, X., Kermode, A.R., Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds (2003) Plant Mol. Biol., 52, pp. 729-744. , http://www.ncbi.nlm.nih.gov/pubmed/13677463
  • Langston, B.J., Bai, S., Jones, M.L., Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias (2005) J. Exp. Bot., 56, pp. 15-23
  • Farage-Barhom, S., Burd, S., Sonego, L., Mett, A., Belausov, E., Gidoni, D., Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei (2011) Mol. Plant, 4, pp. 1062-1073
  • Desai, N., Shankar, V., Single-strand-specific nucleases (2003) FEMS Microbiol. Rev., 26, pp. 457-491. , http://www.ncbi.nlm.nih.gov/pubmed/12586391
  • Nagata, N., Saito, C., Sakai, A., Kuroiwa, H., Kuroiwa, T., The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance (1999) Planta, 209, pp. 53-65
  • Matsushima, R., Tang, L.Y., Zhang, L., Yamada, H., Twell, D., Sakamoto, W., A conserved, Mg2+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development (2011) Plant Cell., 23, pp. 1608-1624
  • Tang, L.Y., Matsushima, R., Sakamoto, W., Mutations defective in ribonucleotide reductase activity interfere with pollen plastid DNA degradation mediated by DPD1 exonuclease (2012) Plant J., 70, pp. 637-649
  • Wang, D., Zhang, Q., Liu, Y., Lin, Z., Zhang, S., Sun, M.X., The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance (2010) Plant Cell., 22, pp. 2402-2416
  • D'Amato, F., Polyploidy in cell differentiation (1989) Caryologia, 42, pp. 183-211
  • Traas, J., Hülskamp, M., Gendreau, E., Höfte, H., Endoreduplication and development: rule without dividing? (1998) Curr. Opin. Plant Biol., 1, pp. 498-503. , http://www.ncbi.nlm.nih.gov/pubmed/10066638
  • Larkins, B., Dilkes, B.P., Dante, R., Coelho, C.M., Woo, Y.M., Liu, Y., Investigating the hows and whys of DNA endoreduplication (2001) J. Exp. Bot., 52, pp. 183-192. , http://www.ncbi.nlm.nih.gov/pubmed/11283162
  • Scholes, D.R., Paige, K.N., Plasticity in ploidy: a generalized response to stress (2014) Trends Plant Sci.
  • Cookson, S.J., Radziejwoski, A., Granier, C., Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? (2006) Plant Cell Environ., 29, pp. 1273-1283
  • Kowles, R.V., Srienc, F., Phillips, R.L., Endoreduplication of nuclear DNA in the developing maize endosperm (1990) Dev. Genet., 11, pp. 125-132
  • López-Fernández, M.P., Maldonado, S., Programmed cell death during quinoa perisperm development (2013) J. Exp. Bot., 64, pp. 3313-3325
  • Bino, R., Flow cytometric determination of nuclear replication stage in seed tissues (1993) Ann. Bot., 72, pp. 181-187
  • Tapia, M., Agrobiodiversidad en los Andes, Fundación Friedrich Ebert (1999) Lima
  • Kozioł, M.J., Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd) (1992) J. Food Compos. Anal., 5, pp. 35-68
  • Oshodi, H.N., Ogungbenle, M.O., Oladi, A.A., Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours (1999) Int. J. Food Sci. Nutr., 50, pp. 325-331
  • Koziol, M., Quinoa: a potential new oil crop (1993) New Crop., pp. 328-336. , Wiley, New York, J.E. Janick, J. Simon (Eds.)
  • Porra, R.J., The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b (2002) Photosynth. Res., 73, pp. 149-156
  • Harris, K.F., Pesic-Van Esbroeck, Z., Duffus, J.E., Moderate-temperature polymerization of LR White in a nitrogen atmosphere (1995) Microsc. Res. Tech., 32, pp. 264-265
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254. , http://www.ncbi.nlm.nih.gov/pubmed/942051
  • Thelen, M.P., Northcote, D.H., Identification and purification of a nuclease from Zinnia elegans L.: a potential molecular marker for xylogenesis (1989) Planta, 179, pp. 181-195
  • Leśniewicz, K., Pieńkowska, J., Poreba, E., Characterization of nucleases involved in seedling development of cauliflower (2010) J. Plant Physiol., 167, pp. 1093-1100
  • Otto, F., DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA (1990) Methods Cell Biol., 33, pp. 105-110. , http://www.ncbi.nlm.nih.gov/pubmed/1707478
  • Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Pyung, O.L., Hong, G.N., Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis (2005) Plant J., 42, pp. 567-585
  • Noodén, L.D., The phenomena of senescence and aging (1988) Senescence and Aging in Plants, pp. 1-50. , Academic Press, San Diego, L. Noodén, A. Leopold (Eds.)
  • Woo, H.R., Chung, K.M., Park, J.H., Oh, S.A., Ahn, T., Hong, S.H., ORE9, an F-box protein that regulates leaf senescence in Arabidopsis (2001) Plant Cell., 13, pp. 1779-1790
  • Carrión, C.A., Costa, M.L., Martínez, D.E., Mohr, C., Humbeck, K., Guiamet, J.J., In vivo inhibition of cysteine proteases provides evidence for the involvement of "senescence-associated vacuoles" in chloroplast protein degradation during dark-induced senescence of tobacco leaves (2013) J. Exp. Bot., 64, pp. 4967-4980
  • Díaz-Mendoza, M., Velasco-Arroyo, B., González-Melendi, P., Martínez, M., Díaz, I., C1A cysteine protease-cystatin interactions in leaf senescence (2014) J. Exp. Bot., 65, pp. 3825-3833
  • Yen, C.H., Yang, C.H., Evidence for programmed cell death during leaf senescence in plants (1998) Plant Cell Physiol., 39, pp. 922-927
  • Mittler, R., Lam, E., Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death (1995) Plant Cell., 7, pp. 1951-1962
  • Thomas, H., Smart, C.M., Crops that stay green (1993) Ann. Appl. Biol., 123, pp. 193-219
  • Stoddart, J., Thomas, H., Leaf senescence (1982) Encycl. Plant Physiol, pp. 592-636. , Springer-Verlag, Berlin, D. Boulter, B. Parthier (Eds.)
  • Nooden, L.D., Senescence mechanisms (1997) Physiol. Plant, 99, pp. 511-753
  • Barton, R., Fine structure of mesophyll cells in senescing leaves of Phaseolus (1966) Planta, 71, pp. 314-325
  • Nii, N., Kawano, S., Nakamura, S., Kuroiwa, T., Changes in the fine structure of chloroplast and chloroplast DNA of peach leaves during senescence (1988) Engei Gakkai Zasshi., 57, pp. 390-398
  • Wu, X.-Y., Kuai, B.-K., Jia, J.-Z., Jing, H.-C., Regulation of leaf senescence and crop genetic improvement (2012) J. Integr. Plant Biol., 54, pp. 936-952
  • Blank, A., McKeon, T., Single-strand-preferring nuclease activity in wheat leaves is increased in senescence and is negatively photoregulated (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 3169-3173
  • Wood, M., Power, J.B., Davey, M.R., Lowe, K.C., Mulligan, B.J., Factors affecting single strand-preferring nuclease activity during leaf aging and dark-induced senescence in barley (Hordeum vulgare l.) (1998) Plant Sci., 131, pp. 149-159
  • Lers, A., Lomaniec, E., Burd, S., Khalchitski, A., The characterization of LeNUC1, a nuclease associated with leaf senescence of tomato (2001) Physiol. Plant, 112, pp. 176-182. , http://www.ncbi.nlm.nih.gov/pubmed/11454222
  • Canetti, L., Lomaniec, E., Elkind, Y., Lers, A., Nuclease activities associated with dark-induced and natural leaf senescence in parsley (2002) Plant Sci., 163, pp. 873-880
  • Xu, Y., Hanson, M.R., Programmed cell death during pollination-induced petal senescence in petunia (2000) Plant Physiol., 122, pp. 1323-1333
  • Lesniewicz, K., Karlowski, W.M., Pienkowska, J.R., Krzywkowski, P., Poreba, E., The plant s1-like nuclease family has evolved a highly diverse range of catalytic capabilities (2013) Plant Cell Physiol., 54, pp. 1064-1078
  • Pérez-Amador, M., Abler, M.L., De Rocher, E.J., Thompson, D.M., van Hoof, A., LeBrasseur, N.D., Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis (2000) Plant Physiol., 122, pp. 169-180
  • Farage-Barhom, S., Burd, S., Sonego, L., Perl-Treves, R., Lers, A., Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes (2008) J. Exp. Bot., 59, pp. 3247-3258
  • Tang, L.Y., Sakamoto, W., Tissue-specific organelle DNA degradation mediated by DPD1 exonuclease (2011) Plant Signal. Behav., 6, pp. 1391-1393
  • Beers, E.P., Programmed cell death during plant growth and development (1997) Cell Death Differ., 4, pp. 649-661
  • Greenberg, J.T., Programmed cell death: a way of life for plants (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 12094-12097
  • Kolano, B., Dorota, M., Siwinska, J., Endopolyploidy patterns during development of Chenopodium quinoa (2009) Acta Biol. Cracoviensia Ser. Bot., 51, pp. 85-92
  • Kudo, N., Kimura, Y., Flow cytometric evidence for endopolyploidization in cabbage (Brassica oleracea L.) flowers (2001) Sex Plant Reprod., 13, pp. 279-283

Citas:

---------- APA ----------
López-Fernández, M.P., Burrieza, H.P., Rizzo, A.J., Martínez-Tosar, L.J. & Maldonado, S. (2015) . Cellular and molecular aspects of quinoa leaf senescence. Plant Science, 238, 178-187.
http://dx.doi.org/10.1016/j.plantsci.2015.06.003
---------- CHICAGO ----------
López-Fernández, M.P., Burrieza, H.P., Rizzo, A.J., Martínez-Tosar, L.J., Maldonado, S. "Cellular and molecular aspects of quinoa leaf senescence" . Plant Science 238 (2015) : 178-187.
http://dx.doi.org/10.1016/j.plantsci.2015.06.003
---------- MLA ----------
López-Fernández, M.P., Burrieza, H.P., Rizzo, A.J., Martínez-Tosar, L.J., Maldonado, S. "Cellular and molecular aspects of quinoa leaf senescence" . Plant Science, vol. 238, 2015, pp. 178-187.
http://dx.doi.org/10.1016/j.plantsci.2015.06.003
---------- VANCOUVER ----------
López-Fernández, M.P., Burrieza, H.P., Rizzo, A.J., Martínez-Tosar, L.J., Maldonado, S. Cellular and molecular aspects of quinoa leaf senescence. Plant Sci. 2015;238:178-187.
http://dx.doi.org/10.1016/j.plantsci.2015.06.003