Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The cell wall composition of apples callus cultures showed changes in the presence of 5mgl-1 of three different plant growth regulators (PGRs), namely picloram, abscisic acid and gibberellic acid. Although the structural functions of cell walls do not generally allow for pronounced variations of the total pectin and matrix glycan content, this work provides evidence that the addition of these plant growth regulators can rule, at least partly, cell wall metabolism in apple callus cultures. The chelator- and carbonate-extracts always had the analytical characteristics of pectins, with high proportions of uronic acids, arabinose and galactose as the main monosaccharides, and a significant proportion of rhamnose, but the cross-linking glycan fractions were still rich in RG-I-like material. The application of PGRs produced shifts of uronic acid and neutral sugars between fractions. Arabinose was the neutral sugar exhibiting more variations in apple callus cell wall. Picloram and abscisic acid produced an increase of the uronic acid contents of the cell walls. The AIRs obtained from calluses treated with different PGRs did not show large amounts of high molecular weight products, as determined by size-exclusion chromatography. For the carbonate-extract only the callus treated with picloram displayed two separated peaks for products of different molecular weights. The chromatographic profiles for the 4% KOH-extract displayed two peaks for all the treatments, one very sharp with high molecular weight, and another one wider of smaller molecular weight, whereas the difference between treatments can only be appraised through the areas of the peaks. This is the first report on cell wall composition from fruit calluses supplemented with different PGRs. © 2011 Elsevier Ireland Ltd.

Registro:

Documento: Artículo
Título:Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators
Autor:Alayón-Luaces, P.; Ponce, N.M.A.; Mroginski, L.A.; Stortz, C.A.; Sozzi, G.O.
Filiación:Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, W3402 Corrientes, Argentina
Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428 Buenos Aires, Argentina
CONICET, Av. B. Rivadavia 1917, C1033 Buenos Aires, Argentina
Palabras clave:Callus cultures; Cell wall; Cross-linking glycan; Malus domestica; Pectin; Plant growth regulators; abscisic acid; arabinose; gibberellic acid; gibberellin; monosaccharide; pectin; phytohormone; picloram; polysaccharide; uronic acid; article; cell wall; comparative study; culture technique; drug effect; fruit; Malus; metabolism; Abscisic Acid; Arabinose; Cell Culture Techniques; Cell Wall; Fruit; Gibberellins; Malus; Monosaccharides; Pectins; Picloram; Plant Growth Regulators; Polysaccharides; Uronic Acids; Malus x domestica
Año:2012
Volumen:185-186
Página de inicio:169
Página de fin:175
DOI: http://dx.doi.org/10.1016/j.plantsci.2011.10.008
Título revista:Plant Science
Título revista abreviado:Plant Sci.
ISSN:01689452
CODEN:PLSCE
CAS:abscisic acid, 21293-29-8; arabinose, 147-81-9; gibberellic acid, 77-06-5; pectin, 9000-69-5; picloram, 1918-02-1; Abscisic Acid, 21293-29-8; Arabinose, 147-81-9; Gibberellins; Monosaccharides; Pectins; Picloram, 1918-02-1; Plant Growth Regulators; Polysaccharides; Uronic Acids; gibberellic acid, BU0A7MWB6L; pectin, 9000-69-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689452_v185-186_n_p169_AlayonLuaces

Referencias:

  • Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth (1993) Plant J., 3, pp. 1-30
  • Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G., Hahn, M.G., Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots (1996) Plant Physiol., 110, pp. 1413-1429
  • Willats, W.G.T., Orfila, C., Limberg, G., Buchholt, H.C., van Alebeek, G.-J.-W.M., Voragen, A.G.J., Marcus, S.E., Knox, J.P., Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties, and cell adhesion (2001) J. Biol. Chem., 276, pp. 9404-19413
  • Scheible, W.-R., Pauly, M., Glycosyltransferases and cell wall biosynthesis: novel players and insights (2004) Curr. Opin. Plant Biol., 7, pp. 285-295
  • Rose, J.K.C., Saladié, M., Catalá, C., The plot thickens: new perspectives of primary cell wall modification (2004) Curr. Opin. Plant Biol., 7, pp. 296-301
  • Meijer, M., Murria, J., Cell cycle controls and the development of plant form (2001) Curr. Opin. Plant Biol., 4, pp. 44-49
  • O'Neill, M.A., Eberhard, S., Albersheim, P., Darvill, A.G., Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth (2001) Science, 294, pp. 846-849
  • Fry, S.C., Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship (1989) Physiol. Plant., 75, pp. 532-536
  • Catalá, C., Rose, J.K.C., Bennett, A.B., Auxin regulation and spatial localization of an endo-1,4-β-d-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls (1997) Plant J., 12, pp. 417-426
  • Hutchison, K.W., Singer, P.B., McInnis, S., Diaz-Sala, C., Greenwood, M.S., Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin (1999) Plant Physiol., 120, pp. 827-831
  • Yeo, U.D., Pandey, D.M., Kim, K.H., Long-term effects of growth regulators on growth and turnover of symplastic and apoplastic sugars in the suspension subculture of kidney bean (2004) J. Plant Biol., 47, pp. 21-26
  • Alayón-Luaces, P., Pagano, E.A., Mroginski, L.A., Sozzi, G.O., Four glycoside hydrolases are differentially modulated by auxins, cytokinins, abscisic acid and gibberellic acid in apple fruit callus cultures (2008) Plant Cell Tiss. Org. Cult., 95, pp. 257-263
  • Alayón-Luaces, P., Pagano, E.A., Mroginski, L.A., Sozzi, G.O., Activity levels of six glycoside hydrolases in apple fruit callus cultures depend on the type and concentration of carbohydrates supplied and the presence of plant growth regulators (2010) Plant Cell Tiss. Org. Cult., 101, pp. 1-10
  • Sozzi, G.O., Greve, L.C., Prody, G.A., Labavitch, J.M., Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-l-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs (2002) Plant Physiol., 129, pp. 1330-1340
  • Rolland, F., Baena-González, E., Sheen, J., Sugars sensing and signaling in plants: conserved and novel mechanisms (2006) Ann. Rev. Plant Biol., 57, pp. 675-709
  • Cohen, J.D., In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening (1996) J. Am. Soc. Hortic. Sci., 121, pp. 520-524
  • Ishida, B.K., Baldwin, E.A., Buttery, R.G., Chui, S.H., Ling, L.C., Flavor volatiles, sugars and color development in ripening in vitro-cultured tomato fruit and calyx (1993) Physiol. Plant., 89, pp. 861-867
  • Liu, J.-H., Nada, K., Honda, C., Kitashiba, H., Wen, X.-P., Pang, X.-M., Moriguchi, T., Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response (2006) J. Exp. Bot., 57, pp. 2589-2599
  • Konno, H., Tsumuki, H., Nakashima, S., Characterization of the cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes of Distylium racemosum callus (2010) Plant Sci., 178, pp. 213-220
  • Ponce, N.M.A., Ziegler, V.H., Stortz, C.A., Sozzi, G.O., Compositional changes in cell wall polysaccharides from Japanese plum (Prunus salicina Lindl.) during growth and on-tree ripening (2010) J. Agric. Food Chem., 58, pp. 2562-2570
  • Thorpe, T.A., Meier, D.D., Starch metabolism, respiration and shoot formation in tobacco callus cultures (1972) Physiol. Plant., 27, pp. 365-369
  • Thorpe, T.A., Murashige, T., Some histochemical changes underlying shoot initiation in tobacco callus cultures (1970) Can. J. Bot., 48, pp. 277-285
  • Tanimoto, E., Huber, D.J., Effect of GA3 on the molecular mass of polyuronides in the cell walls of Alaska pea roots (1997) Plant Cell Physiol., 38, pp. 25-35
  • Willats, W.G.T., Steele-King, C.G., Marcus, S.E., Knox, J.P., Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation (1999) Plant J., 20, pp. 619-628
  • Orfila, C., Seymour, G.B., Willats, W.G.T., Huxham, I.M., Jarvis, M.C., Dover, C.J., Thompson, A.J., Knox, J.P., Altered middle lamella homogalacturonan and disrupted deposition of (1→5)-α-l-arabinan in the pericarp of Cnr, a ripening mutant of tomato (2001) Plant Physiol., 126, pp. 210-221
  • Orfila, C., Huisman, M.M.H., Willats, W.G.T., van Alebeek, G.-J.-W.M., Schols, H.A., Seymour, G.B., Knox, J.P., Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening (2002) Planta, 215, pp. 440-447
  • Kikuchi, A., Edashige, Y., Ishii, T., Fujii, T., Satoh, S., Variations in the structure of neutral sugar chains in the pectic polysaccharides of morphologically different carrot calli and correlations with the size of cell clusters (1996) Planta, 198, pp. 634-639
  • Iwai, H., Ishii, T., Satoh, S., Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells (2001) Planta, 213, pp. 907-915
  • Redgwell, R.J., Fischer, M., Kendal, E., MacRae, E.A., Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls (1997) Planta, 203, pp. 174-181
  • Brummell, D.A., Dal Cin, V., Crisosto, C.H., Labavitch, J.M., Cell wall metabolism during maturation, ripening and senescence of peach fruit (2004) J. Exp. Bot., 55, pp. 2029-2039
  • Nishitani, K., Masuda, Y., Auxin-induced changes in the cell wall structure: changes in the sugar compositions, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall of Vigna angularis (1981) Physiol. Plant., 52, pp. 482-494
  • Harpster, M.H., Brummell, D.A., Dunsmuir, P., Suppression of ripening-related endo-1-4-β-glucanase in transgenic pepper fruit does not prevent depolymerization of cell wall polysaccharides during ripening (2002) Plant Mol. Biol., 50, pp. 345-355
  • Brummell, D.A., Labavitch, J.M., Effect of antisense suppression of endopolygalacturonase activity on polyuronide molecular weight in ripening tomato fruit and in fruit homogenates (1997) Plant Physiol., 115, pp. 717-725
  • Huber, D.J., O'Donoghue, E.M., Polyuronides in avocado (Persea americana) and tomato (Lycopersicon esculentum) fruit exhibit markedly different patterns of molecular weight downshifts during ripening (1993) Plant Physiol., 102, pp. 473-480
  • Rose, J.K.C., Hadfield, K.A., Labavitch, J.M., Bennett, A.B., Temporal sequence of cell wall disassembly in rapidly ripening melon fruit (1998) Plant Physiol., 117, pp. 345-361
  • Talbott, L.D., Ray, P.M., Molecular size and separability features of pea cell wall polysaccharides: implications for models of primary wall structure (1992) Plant Physiol., 98, pp. 357-368
  • Nishitani, K., Masuda, Y., Auxin-induced changes in the cell wall xyloglucans: effects of auxin on the two different subfractions of xyloglucans in the epicotyl cell wall of Vigna angularis (1983) Plant Cell Physiol., 24, pp. 345-355
  • Lorences, E.P., Zarra, I., Auxin-induced growth in hypocotyl segments of Pinus pinaster Aiton: changes in molecular weight distribution of hemicellulosic polysaccharides (1987) J. Exp. Bot., 38, pp. 960-967
  • Lorences, E.P., Suárez, L., Zarra, I., Hypocotyl growth of Pinus pinaster seedlings: changes in the molecular weight distribution of hemicellulosic polysaccharides (1987) Physiol. Plant., 69, pp. 466-471
  • Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P., The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components (1973) Plant Physiol., 51, pp. 188-196
  • Thompson, J.E., Fry, S.C., Evidence of covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells (2000) Planta, 211, pp. 275-278
  • Popper, Z.A., Fry, S.C., Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension cultured Angiosperm cells (2005) Ann. Bot., 96, pp. 91-99
  • Vicente, A.R., Saladié, M., Rose, J.K.C., Labavitch, J.M., The linkage between cell wall metabolism and fruit softening: looking to the future (2007) J. Sci. Food Agric., 87, pp. 1435-1448
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Anal. Chem., 28, pp. 350-356
  • Filisetti-Cozzi, M.C.C., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Anal. Biochem., 197, pp. 157-162
  • Ahmed, A.E.R., Labavitch, J.M., A simplified method for accurate determination of cell wall uronide content (1977) J. Food Biochem., 1, pp. 361-365
  • Karkalas, J.J., An improved enzymic method for the determination of native and modified starch (1985) J. Sci. Food Agric., 36, pp. 1019-1027
  • Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-497
  • Stevenson, T., Furneaux, R., Chemical methods for the analysis of sulphated galactans from red algae (1991) Carbohydr. Res., 210, pp. 277-298

Citas:

---------- APA ----------
Alayón-Luaces, P., Ponce, N.M.A., Mroginski, L.A., Stortz, C.A. & Sozzi, G.O. (2012) . Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators. Plant Science, 185-186, 169-175.
http://dx.doi.org/10.1016/j.plantsci.2011.10.008
---------- CHICAGO ----------
Alayón-Luaces, P., Ponce, N.M.A., Mroginski, L.A., Stortz, C.A., Sozzi, G.O. "Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators" . Plant Science 185-186 (2012) : 169-175.
http://dx.doi.org/10.1016/j.plantsci.2011.10.008
---------- MLA ----------
Alayón-Luaces, P., Ponce, N.M.A., Mroginski, L.A., Stortz, C.A., Sozzi, G.O. "Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators" . Plant Science, vol. 185-186, 2012, pp. 169-175.
http://dx.doi.org/10.1016/j.plantsci.2011.10.008
---------- VANCOUVER ----------
Alayón-Luaces, P., Ponce, N.M.A., Mroginski, L.A., Stortz, C.A., Sozzi, G.O. Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators. Plant Sci. 2012;185-186:169-175.
http://dx.doi.org/10.1016/j.plantsci.2011.10.008