Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The genus Lotus comprises around 100 annual and perennial species with worldwide distribution. The relevance of Lotus japonicus as a model plant has been recently demonstrated in numerous studies. In addition, some of the Lotus species show a great potential for adaptation to a number of abiotic stresses. Therefore, they are relevant components of grassland ecosystems in environmentally constrained areas of several South American countries and Australia, where they are used for livestock production. Also, the fact that the roots of these species form rhizobial and mycorrhizal associations makes the annual L. japonicus a suitable model plant for legumes, particularly in studies directed to recognize the mechanisms intervening in the tolerance to abiotic factors in the field, where these interactions occur. These properties justify the increased utilization of some Lotus species as a strategy for dunes revegetation and reclamation of heavy metal-contaminated or burned soils in Europe. © 2011 Elsevier Ireland Ltd.

Registro:

Documento: Artículo
Título:Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils
Autor:Escaray, F.J.; Menendez, A.B.; Gárriz, A.; Pieckenstain, F.L.; Estrella, M.J.; Castagno, L.N.; Carrasco, P.; Sanjuán, J.; Ruiz, O.A.
Filiación:Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM/CONICET, 7130, Camino circunvalación laguna km 6, Chascomús, Argentina
Departamento de Biodiversidad y Biología Experimental, FCEN, University of Buenos Aires, Buenos Aires, Argentina
Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner, 50, Burjassot 46100, Spain
Departamento de Microbiologia del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Spain
Palabras clave:Abiotic stress; Lotus; Restoration; Symbionts; heavy metal; adaptation; article; Australia; ecosystem; environmental protection; Europe; growth, development and aging; Lotus; metabolism; plant root; soil pollutant; South America; symbiosis; Adaptation, Physiological; Australia; Conservation of Natural Resources; Ecosystem; Europe; Lotus; Metals, Heavy; Plant Roots; Soil Pollutants; South America; Symbiosis; Lotus corniculatus var. japonicus
Año:2012
Volumen:182
Número:1
Página de inicio:121
Página de fin:133
DOI: http://dx.doi.org/10.1016/j.plantsci.2011.03.016
Título revista:Plant Science
Título revista abreviado:Plant Sci.
ISSN:01689452
CODEN:PLSCE
CAS:Metals, Heavy; Soil Pollutants
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689452_v182_n1_p121_Escaray

Referencias:

  • Mabberley, D.J., (1997) The Plant-Book: A Portable Dictionary of the Vascular Plants, , Cambridge University Press, Cambridge, UK
  • Wojciechowski, M.F., Reconstructing the phylogeny of Legumes (Leguminosae) (2003) An Early 21st Century Perspective, pp. 5-35. , Kew, Royal Botanic Gardens, B.B. Klitgaard, A. Bruneau (Eds.)
  • Albretcht, C., Geurts, R., Bisseling, T., Legume nodulation and mycorrhizae formation; two extremes in host specificity meet (1999) EMBO, 18, pp. 281-288
  • Gregerson, R.G., Robinson, D.L., Vance, C.P., (1999) Carbon and Nitrogen Metabolism in Lotus, pp. 167-185. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Pajuelo, E., Carrasco, J.A., Romero, L.C., Chamber, M.A., Gotor, C., Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress (2007) Plant Biol., 9, pp. 672-681
  • Pajuelo, E., Stougaard, J., (2005) Lotus japonicus as a Model System, pp. 3-24. , Springer, Netherlands, A.J. Marquez (Ed.)
  • Doyle, J.J., Luckow, M.A., The rest of the iceberg. Legume diversity and evolution in a phylogenetic context (2003) Plant Physiol., 131, pp. 900-910
  • Hirsch, A.M., Lum, M.R., Downie, J.A., Fred, E.W., Baldwin, I.L., What makes the rhizobia-legume symbiosis so special? (2001) Plant Physiol., 127, pp. 1484-1492
  • Singh, R.J., Chung, G.H., Nelson, R.L., Landmark research in legumes (2007) Genome, 50, pp. 525-537
  • Allan, G.J., Porter, J.M., Tribal delimitation and phylogenetic relationships of Loteae and Coronilleae (Faboideae: Fabaceae) with special reference to Lotus: evidence from nuclear ribosomal ITS sequences (2000) Am. J. Bot., 87, pp. 1871-1881
  • Allan, G.J., Zimmer, E.A., Wagner, W.L., Sokoloff, D.D., Molecular phylogenetic analyses of tribe Loteae (Leguminosae) (2003) Bruneau: Implications for Classification and Biogeography, pp. 371-393. , Royal Botanic Gardens, Kew, B.B. Klitgaard (Ed.)
  • Arambarri, A.M., A cladistic analysis of the New World species of Lotus L. (Fabaceae, Loteae) (2000) Cladistics, 16, pp. 283-297
  • Clifford, W.C., Grant, W.F., Pollen morphology in Loteae (Leguminosae) with particular reference to the genus Lotus L. (1993) Grana, 32, pp. 129-153
  • Kirkbride, J.H., (1999) Lotus Systematics and Distribution, pp. 1-20. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Arambarri, A.A., (1999) Illustrated Catalogue of Lotus L. Seeds (Fabaceae), pp. 21-41. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Allan, G.J., Francisco-Ortega, J., Santos-Guerra, A., Boerner, E., Zimmer, E.A., Molecular phylogenetic evidence for the geographic origin and classification of Canary Island Lotus (Fabaceae: Loteae) (2004) Mol. Phylogenet. Evol., 32, pp. 123-138
  • Degtjareva, G.V., Kramina, T.E., Sokoloff, D.D., Samigullin, T.H., Sandral, G., Valiejo-Roman, C.M., New data on nrITS phylogeny of Lotus (Leguminosae, Loteae) (2008) Wulfenia, 15, pp. 35-49
  • Degtjareva, G.V., Kramina, T.E., Sokoloff, D.D., Samigullin, T.H., Valiejo-Roman, C.M., Antonov, A.S., Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology (2006) Can. J. Bot., 84, pp. 813-830
  • Sandral, G., Degtjareva, G.V., Kramina, T.E., Valiejo-Roman, C.M., Are Lotus creticus and Lotus cytisoides (Leguminosae) closely related species? Evidence from nuclear ribosomal ITS sequence data (2010) Genet. Resour. Crop Evol., 57, pp. 501-514
  • Campos, L.P., Raelson, J.V., Grant, W.F., Genome relationships among Lotus species based on random amplified polymorphic DNA (RAPD) (1994) Theor. Appl. Genet., 88, pp. 417-422
  • García De Los Santos, G., Steiner, J.J., Genetic diversity in Lotus corniculatus determined by morphologic traits and RAPDs (2003) Rev. Fitotec. Mex., 26, pp. 173-181
  • Fjellstrom, G., Beuselinck, P.R., Steiner, J.J., RFLP marker analysis supports tetrasonic inheritance in Lotus corniculatus L. (2001) Theor. Appl. Genet., 102, pp. 718-725
  • Pina, F.J., Valdés, B., A New Species of Lotus (Leguminosae, Loteae) from the L. angustissimus (sect. Lotus) Complex (2009) Syst. Bot., 34, pp. 709-714
  • Gauthier, P., Lumaret, R., Bedecarrats, A., Chloroplast-DNA variation in the genus Lotus (Fabaceae) and further evidence regarding the maternal parentage of Lotus corniculatus L. (1997) Theor. Appl. Genet., 95, pp. 629-636
  • Arambarri, A.M., Stenglein, S.A., Colares, M.N., Novoa, M.C., Taxonomy of the New World species of Lotus (Leguminosae: Loteae) (2005) Aust. J. Bot., 53, pp. 797-812
  • Sokoloff, D.D., Degtjareva, G.V., Endress, P.K., Remizowa, M.V., Samigullin, T.H., Valiejo-Roman, C.M., Inflorescence and early flower development in Loteae (Leguminosae) in a phylogenetic and taxonomic context (2007) Int. J. Plant Sci., 168, pp. 801-833
  • Sokoloff, D.D., Lock, J.M., Tribe Loteae (2005) Lock Royal Botanic Gardens, pp. 455-465. , Kew, UK, B.G. Lewis, B. Schrire, M. Mackinder (Eds.)
  • Brouillet, L., The taxonomy of North American Loti (Fabaceae: Loteae): new names in Acmispon and Hosackia (2008) J. Bot. Res. Inst. Texas, 2, pp. 387-394
  • Belesky, D.P., (1999) Lotus Species Used in Reclamation, Renovation and Revegetation, pp. 133-143. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Blumenthal, M.J., McGraw, R.L., Lotus adaptation, use and management (1999) Trefoil: The Science and Technology of Lotus, pp. 97-119. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Díaz, P., Borsani, O., Monza, J., (2005) Lotus-Related Species and their Agronomic Importance, pp. 25-37. , Springer, Netherlands, A.J. Marquez (Ed.)
  • Acebes Ginovés, J.R., Oliva Tejera, F., Current status and uses of the endemic Lotus to the Canary Islands (2007) Lotus Newslett., 37, pp. 65-66
  • Moreno, J.C., (2008), pp. 86-86. , Lista roja de la flora vascular Española, in, Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas), Madrid, 2008; Oliva-Tejera, F., Caujapé-Castells, J., Naranjo-Suárez, J., Navarro-Déniz, J., Acebes-Ginovés, J.R., Bramwell, D., Population genetic differentiation in taxa of Lotus (Fabaceae: Loteae) endemic to the Gran Canarian pine forest (2005) Heredity, 94, pp. 199-206
  • Hind, N., 619. Lotus maculatus (2008) Curtis's Bot. Mag., 25, pp. 146-157
  • Graham, P.H., Vance, C.P., Legumes: importance and constraints to greater use (2003) Plant Physiol., 131, pp. 872-877
  • Buxton, D.R., Quality-related characteristics of forages as influenced by plant environment and agronomic factors (1996) Anim. Feed Sci. Technol., 59, pp. 37-49
  • Sleugh, B., Moore, K.J., George, J.R., Brummer, E.C., Binary legume-grass mixtures improve forage yield, quality, and seasonal distribution (2000) Agron. J., 92, pp. 24-29
  • Wen, L., Kallenbach, R.L., Williams, J.E., Roberts, C.A., Beuselinck, P.R., McGraw, R.L., Benedict, H.R., Performance of steers grazing rhizomatous and nonrhizomatous birdsfoot trefoil in pure stands and in tall fescue mixtures (2002) J. Anim. Sci., 80, pp. 1970-1976
  • Zemenchik, R.A., Albrecht, K.A., Shaver, R.D., Improved nutritive value of kura clover-and birdsfoot trefoil-grass mixtures compared with grass monocultures (2002) Agron. J., 94, pp. 1131-1138
  • Acuña, H.P., Varietal comparision of three species of genus Lotus (L. corniculatus L., L. uliginosus Cav. y L. tenuis Wald et Kit.) in soils with aptitude for cropping rice (1998) Agric. Tec. Chile, 58, pp. 7-14
  • Cassida, K.A., Griffin, T.S., Rodriguez, J., Patching, S.C., Hesterman, O.B., Rust, S.R., Protein degradability and forage quality in maturing alfalfa red clover, and birdsfoot trefoil (2000) Crop Sci., 40, pp. 209-215
  • Sartor, L.R., Adami, P.F., Soares, A.B., Pitta, C.S.R., Montardo, D.P., Dallóagnol, M., Cool season forage legumes in southwestern of Paraná (2010) Sci. Agr., 11, pp. 293-298
  • Miñón, D.P., Sevilla, G.H., Montes, L., Fernández, O.N., (1990), pp. 16-16. , Lotus tenuis: leguminosa forrajera para la Pampa Deprimida, in: Boletín técnico n° 98 Unidad Integrada Balcarce, (in spanish); Montes, L., Lotus tenuis (1988) Revista Argentina de Producción Animal, 8, pp. 367-376. , (in spanish)
  • Hughes, H.D., (1981) Cuernecillo, pp. 215-232. , Compañia Editora Continental, Mexico, H.D. Hughes, M. Heath, D.S. Metcalfe (Eds.)
  • Chapman, G., Bork, E., Donkor, N., Hudson, R., Forage yield and quality of chicory, birdsfoot trefoil, and alfalfa during the establishment year (2008) Open Agric. J., 2, pp. 68-74
  • Ixtaina, V.Y., Mujica, M.M., Seedling vigor response of Lotus tenuis populations to contrasting variations of water and nutrient availability (2010) Agrociencia, 44, pp. 31-41
  • Beuselinck, P.R., Brummer, E.C., Viands, D.K., Asay, K.H., Smith, R.R., Steiner, J.J., Brauer, D.K., Genotype and environment affect rhizome growth of birdsfoot trefoil (2005) Crop Sci., 45, pp. 1736-1740
  • Guillén, R., Considerations in Lotus spp. seed production (2007) Lotus Newslett., 37, pp. 47-51
  • Repková, J., Hofbauer, J., Seed pod shattering in the genus Lotus and its overcoming (2009) Czech. J. Genet. Plant Breed., 45, pp. 39-44
  • Ayres, J.F., Kelman, W.M., Blumenthal, M.J., The Sharnae greater lotus (Lotus uliginosus Schkuhr) germplasm-potential for low latitude environments (2008) Lotus Newslett., 38, pp. 7-19
  • Asuaga, A., Lotus subbiflorus cv El Rincón, a new alternative for extensive improvements of natural pastures (1994) Proceedings of the First International Lotus Symposium, pp. 147-149. , P.R. Beuselinck, K. Roberts (Eds.)
  • Li, Y.-G., Tanner, G., Larkin, P., The DMACA-HCl protocol and the treshold proanthocyanidin content for bloat safety in forage legumes (1996) J. Sci. Food Agric., 70, pp. 89-101
  • Aerts, R.J., Barry, T.N., McNabb, W.C., Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages (1999) Agric. Ecosyst. Environ., 75, pp. 1-12
  • Barry, T.N., McNabb, W.C., The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants (1999) Br. J. Nutr., pp. 263-272
  • Mangan, J.L., Nutritional effects of tannins in animal feeds (1988) Nutr. Res. Rev., 1, pp. 209-231
  • Marles, M.A.S., Ray, H., Gruber, M.Y., New perspectives on proanthocyanidin biochemistry and molecular regulation (2003) Phytochemistry, 64, pp. 367-383
  • Min, B.R., Hart, S.P., Tannins for suppression of internal parasites (2003) J. Anim. Sci., 81, pp. 102-109
  • Min, B.R., Pinchak, W.E., Anderson, R.C., Fulford, J.D., Puchala, R., Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat (2006) J. Anim. Sci., 84, pp. 2546-2554
  • Molan, A.L., Waghorn, G.C., Min, B.R., McNabb, W.C., The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro (2000) Folia Parasitol., 47, pp. 39-44
  • Nguyen, T., Binh, D., Orskov, E., Effect of foliages containing condensed tannins and on gastrointestinal parasites (2005) Anim. Feed Sci. Technol., 121, pp. 77-87
  • Otero, M.J., Hidalgo, L.G., Condensed tannins in temperate forage species: effects on the productivity of ruminants infected with internal parasites (a review) (2004) LRRD News, 16, pp. 1-17
  • Patra, A.K., Saxena, J., A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen (2010) Phytochemistry, 71, pp. 1198-1222
  • Scharenberg, A., Heckendorn, F., Dohme, F., Lüscher, A., Maurer, V., Suter, D., Hertzberg, H., Tanniferous forage plants: agronomic performance, palatability and efficacy against parasitic nematodes in sheep (2008) Agriculture, 23, pp. 19-29
  • Dixon, R.A., Xie, D.-Y., Sharma, S.B., Proanthocyanidins-a final frontier in flavonoid research? (2005) New Phytol., 165, pp. 9-28
  • Barry, T.N., Duncan, S.J., The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep (1984) Br. J. Nutr., 51, pp. 485-491
  • Makkar, H.P.S., Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds (2003) Small Rumin. Res., 49, pp. 241-256
  • Iqbal, Z., Mufti, K.A., Khan, M.N., Anthelmintic effects of condensed tannins (2002) Int. J. Agric. Biol., 4, pp. 438-440
  • Sivakumaran, S., Rumball, W., Lane, G.A., Fraser, K., Foo, L.Y., Yu, M., Meagher, L.P., Variation of proanthocyanidins in Lotus species (2006) J. Chem. Ecol., 32, pp. 1797-1816
  • Escaray, F.J., Rosato, M., Pieckenstain, F.L., Rosello, J.A., Carrasco, P., Ruiz, O.A., Differentiation between Lotus tenuis and Lotus corniculatus as assessed by staining of leaf tannic cells (2008) Lotus Newslett., 38, pp. 69-71
  • Kelman, W.M., Blumenthal, M.J., Oóconnor, J.W., Borchard, P.A., Lotus uliginosus (greater lotus) breeding line LUX97: a high seed producing, low condensed tannin population (2007) Aust. J. Exp. Agric., 47, pp. 116-118
  • Escaray, F.J., Pesqueira, J., Pieckenstain, F.L., Carrasco, P., Ruiz, O.A., Taninos condensados y antocianinas en el género Lotus: su relación con el estrés salino en especies forrajeras para zonas marginales (2007) Innov. Tecnol. Agr., 2, pp. 113-123. , (in spanish)
  • Miller, P.R., Ehlke, N.J., Inheritance of condensed tannins in birdsfoot trefoil (1997) Can. J. Plant Sci., 77, pp. 587-593
  • Gebrehiwot, L., Beuselinck, P.R., Roberts, C.A., Seasonal variations in condensed tannin concentration of three Lotus species (2002) Agron. J., 94, pp. 1059-1065
  • Chipatecua, M.R., Pabón, M.L., Cárdenas, E.A., Carulla, J.E., Efecto de la combinación de una leguminosa tanífera (Lotus uliginosus cv Maky) con Pennisetum clandestinum, sobre la degradación in vitro de proteína y materia seca (2007) Rev. Colomb. Cienc. Pec., 20, pp. 40-48. , (in spanish)
  • Douglas, G.B., Wang, Y., Waghorn, G.C., Barry, T.N., Purchas, R.W., Foote, A.G., Wilson, G.F., Liveweight gain and wool production of sheep grazing Lotus corniculatus and lucerne (Medicago sativa) (1995) N.Z. J. Agric. Res., 38, pp. 95-104
  • Hedqvist, H., Mueller-Harvey, I., Reed, J.D., Krueger, C.G., Murphy, M., Characterisation of tannins and in vitro protein digestibility of several Lotus corniculatus varieties (2000) Anim. Feed Sci. Technol., 87, pp. 41-56
  • Min, B.R., Attwood, G., McNabb, W.C., Molan, A.L., Barry, T.N., The effect of condensed tannins from on the proteolytic activities and growth of rumen bacteria (2005) Anim. Feed Sci. Technol., 121, pp. 45-58
  • Ramirez-Restrepo, C.A., Barry, T.N., López-Villalobos, N., Kemp, P.D., McNabb, W.C., Use of Lotus corniculatus containing condensed tannins to increase lamb and wool production under commercial dryland farming conditions without the use of anthelmintics (2004) Anim. Feed Sci. Technol., 117, pp. 85-105
  • Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T., Sivakumaran, S., Methane production from in vitro rumen incubations with and, and effects of extractable condensed tannin fractions on methanogenesis (2005) Anim. Feed Sci. Technol., pp. 403-419
  • Waghorn, G.C., Shelton, I.D., Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep (1997) J. Agric. Sci., 128, pp. 365-372
  • Wen, L., Roberts, C.A., Williams, J.E., Kallenbach, R.L., Beuselinck, P.R., McGraw, R.L., Condensed tannin concentration of rhizomatous and nonrhizomatous birdsfoot trefoil in grazed mixtures and monocultures (2003) Crop Sci., 43, pp. 302-306
  • Ramirez-Restrepo, C.A., Barry, T.N., Lopez-Villalobos, N., Kemp, P.D., Harvey, T.G., Use of Lotus corniculatus containing condensed tannins to increase reproductive efficiency in ewes under commercial dryland farming conditions (2005) Anim. Feed Sci. Technol., 121, pp. 23-43
  • Bavage, A.D., Davies, I.G., Robbins, M.P., Morris, P., Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (bird's foot trefoil) (1997) Plant Mol. Biol., 35, pp. 443-458
  • Colliver, S.P., Morris, P., Robbins, M.P., Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus (1997) Plant Mol. Biol., 35, pp. 509-522
  • Damiani, F., Paolocci, F., Cluster, P.D., Arcioni, S., Tanner, G.J., Joseph, R.G., Li, Y.-G., Larkin, P.J., The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants (1999) Aust. J. Plant Physiol., 26, pp. 159-169
  • McNabb, W.C., Waghorn, G.C., Peters, J.S., Barry, T.N., The effect of condensed tannins in Lotus pedunculatus on the solubilization and degradation of ribulose-1 5-bisphosphate carboxylase (EC 4. 1. 1. 39; Rubisco) protein in the rumen and the sites of Rubisco digestion (1996) Br. J. Nutr., 76, pp. 535-549
  • Paolocci, F., Bovone, T., Tosti, N., Arcioni, S., Damiani, F., Light and exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins in Lotus corniculatus leaves (2005) J. Exp. Bot., 56, pp. 1093-1103
  • Paolocci, F., Robbins, M.P., Madeo, L., Arcioni, S., Martens, S., Damiani, F., Ectopic expression of a basic Helix-Loop-Helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase genes in Lotus corniculatus (2007) Plant Physiol., 143, pp. 504-516
  • Robbins, M.P., Bavage, A.D., Allison, G., Davies, T., Hauck, B., Morris, P., A comparison of two strategies to modify the hydroxylation of condensed tannin polymers in Lotus corniculatus L. (2005) Phytochemistry, 66, pp. 991-999
  • Robbins, M.P., Bavage, A.D., Strudwicke, C., Morris, P., Genetic manipulation of condensed tannins in higher plants (1998) Plant Physiol., 116, pp. 1133-1144
  • Robbins, M.P., Evans, T.E., Morris, P., The effect of plant growth regulators on growth, morphology and condensed tannin accumulation in transformed root cultures of Lotus corniculatus (1996) Plant Cell Tissue Org., 44, pp. 219-227
  • Robbins, M.P., Paolocci, F., Hughes, J.-W., Turchetti, V., Allison, G., Arcioni, S., Morris, P., Damiani, F., Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus (2003) J. Exp. Bot., 54, pp. 239-248
  • Shimada, N., Sasaki, R., Sato, S., Kaneko, T., Tabata, S., Aoki, T., Ayabe, S., A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome (2005) J. Exp. Bot., 56, pp. 2573-2585
  • Suzuki, H., Sasaki, R., Ogata, Y., Nakamura, Y., Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (2008) Phytochemistry, 69, pp. 99-111
  • Yoshida, K., Iwasaka, R., Kaneko, T., Sato, S., Tabata, S., Sakuta, M., Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family (2008) Plant Cell Physiol., 49, pp. 157-169
  • Yoshida, K., Kume, N., Nakaya, Y., Yamagami, A., Nakano, T., Sakuta, M., Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus (2010) Plant Cell Physiol., 51, pp. 912-922
  • Foo, L.Y., Lu, Y., McNabb, W.C., Waghorn, G., Ulyatt, M.J., Proanthocyanidins from Lotus pedunculatus (1997) Phytochemistry, 45, pp. 1689-1696
  • Foo, L.Y., Newman, R., Waghorn, G., McNabb, W.C., Ulyatt, M.J., Proanthocyanidins from Lotus corniculatus (1996) Phytochemistry, 41, pp. 617-624
  • Aoki, T., Akashi, T., Ayabe, S.-I., Flavonoids of leguminous plants: structure, biological activity, and biosynthesis (2000) J. Plant Res., 113, pp. 475-488
  • Zhao, J., Dixon, R.A., The 'ins' and 'outs' of flavonoid transport (2009) Trends Plant Sci., 15, pp. 72-80
  • Zhao, J., Pang, Y., Dixon, R.A., The mysteries of proanthocyanidin transport and polymerization (2010) Plant Physiol.
  • Hagerman, A.E., Butler, L.G., The specificity of proanthocyanidin-protein interactions (1981) J. Biol. Chem., 256, pp. 4494-4497
  • Haslam, E., Natural polyphenols (vegetable tannins) as drugs: possible modes of action (1996) J. Nat. Prod., 59, pp. 205-215
  • Stoutjesdijk, P.A., Sale, P.W., Larkin, P.J., Possible involvement of condensed tannins in aluminium tolerance of Lotus pedunculatus (2001) Aust. J. Plant Physiol., 28, pp. 1063-1074
  • Dixon, R.A., Paiva, N.L., Stress-induced phenylpropanoid metabolism (1995) Plant Cell, 7, pp. 1085-1097
  • Alippi, A.M., Bacterial diseases of Lotus spp (2005) Lotus Newslett., 35, pp. 17-18
  • Schumpp, O., Ramel, M., Gugerli, P., Broughton, W., Deakin, W., Identification of a Lotus viral pathogen (2007) J. Plant Res., 120, pp. 651-654
  • Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., Lepiniec, L., Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development (2003) Plant Cell, 15, pp. 2514-2531
  • Jayasinghearachchi, H.S., Seneviratne, G., Weerasinghe, H.M.S.P.M., Tannin interactions with legume-rhizobial N 2 fixing symbiosis (2006) Int. J. Agric. Res., 1, pp. 1-7
  • Pankhurst, C.E., Craig, A.S., Jones, W.T., Effectiveness of Lotus root nodules. I. Morphology and flavolan content of nodules formed on Lotus pedunculatus by fast-growing Lotus rhizobia (1979) J. Exp. Bot., 30, pp. 1085-1093
  • Pankhurst, C.E., Jones, W.T., Effectiveness of Lotus root nodules.II. Relationship between root nodule effectiveness and óin vitroó sensitivity of fast-growing Lotus rhizobia to flavolans (1979) J. Exp. Bot., 30, pp. 1095-1107
  • Lagler, J.C., Lotus: un género que no acaba en dos especies (2003) Revista Forrajes & Granos, 62, pp. 72-76. , (in spanish)
  • Kade, M., Wagner, M.L., Strittmatter, C.D., Ricco, R.A., Gurni, A.A., Identification of Lotus tenuis and Lotus corniculatus seeds by their flavonols (1997) Seed Sci. Technol., 25, pp. 585-587
  • Galussi, A.A., Reinoso, P.D., Zimmermann, L.R., Soldá, G.I., Lui, L.M., Identificación de cultivares de Lotus spp. por análisis de proteínas seminales (2006) Rev. Fac. de Agronomía, La Plata, 106, pp. 21-26. , (in spanish)
  • Giorgieri, S., Pañak, K., Díaz, L.E., Etchepare, G., Ruiz, O.A., Comparative analysis of storage proteins of Lotus spp. seeds by CGE and SDS-PAGE (1998) J. Capillary Electrophor., 5, pp. 177-179
  • Celotto, A.I., Sanso, A.M., Cromosome number, seedlings and seed size in Lotus tenuis and L. corniculatus (2008) Lotus Newslett., 38, pp. 64-65
  • Grant, W.F., (1999) Interspecific Hybridization and Amphidiploidy of Lotus as Related to Phylogeny and Evolution, pp. 43-60. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Somaroo, B.H., Grant, W.F., Interespecific hybridization between diploid species of Lotus (Leguminosae) (1971) Genetica, 42, pp. 353-367
  • Escaray, F.J., Paolocci, F., Carrasco, P., del Valle-Tascón, S., Pieckenstain, F.L., Ruiz, O.A., Inter-specific hybridation improves forage quality, salt tolerance and tannin levels in Lotus spp (2009) Biocell, 33, pp. 35-135
  • Beuselinck, P.R., Registration of ARS-2424 birdsfoot trefoil germplasm (2004) Crop Sci., 44, pp. 2277-2278
  • Beuselinck, P.R., Steiner, J.J., Registration of " ARS-2620" Birdsfoot trefoil (1996) Crop Sci., 36, pp. 1414-11414
  • O'Donoughue, L.S.W.F., Grant, New sources of indehiscence for birdsfoot trefoil (Lotus corniculatus, Fabaceae) produced by interspecific hybridization (1988) Genome, 30, pp. 459-468
  • Beuselinck, P.R., Steiner, J.J., Rim, Y.W., Morphological comparison of progeny derived from 4x-2x and 4x-4x hybridizations (2003) Crop Sci., 43, pp. 1741-1746
  • Latour, G., Jones, W.T., Ross, M.D., Production of interspecific hybrids in Lotus aided by endosperm transplants (1978) N.Z. J. Bot., 16, pp. 61-80
  • Wild, A., (2003) Soils Land Food. Managing the Land During the Twenty-First Century, , Cambridge University Press, Cambridge U.K
  • Kosmas, C., Danalatos, N.G., Gerontidis, S., The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions (2000) CATENA, 40, pp. 3-17
  • Zuazo, V., Pleguezuelo, C., (2009) Soil-Erosion and Runoff Prevention by Plant Covers: A Review, pp. 785-811. , Springer, Netherlands, E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, C. Alberola (Eds.)
  • Kramina, T.E., Sokoloff, D.D., Taxonomic bearing of stylodium tooth in the genus Lotus (Papilionaceae) with special reference to Lotus creticus L. (1999) Feddes Repert., 110, pp. 521-527
  • Bañon, S., Fernandez, J.A., Franco, J.A., Torrecillas, A., Alarcón, J.J., Sánchez-Blanco, M.J., Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants (2004) Sci. Hortic.-Amsterdam, 101, pp. 333-342
  • López Valiente, C., Estrellés, E., Soriano, P., Picó, J., Germinative response of Lotus creticus to different temperatures and salinity conditions (2007) Lotus Newslett., 37, pp. 69-70
  • Mokhtar, R., Mohamed, V.A., Arbi, G., Mohamed, N., Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae) (2006) Lotus Newslett., 36, pp. 34-53
  • Morales, M.A., Alarcón, J.J., Torrecillas, A., Sánchez-Blanco, M.J., Growth and water relations of Lotus creticus creticus plants as affected by salinity (2000) Biol. Plant., 43, pp. 413-417
  • Rejili, M., Vadel, A.M., Guetet, A., Mahdhi, M., Lachiheb, B., Ferchichi, A., Mars, M., Influence of temperature and salinity on the germination of Lotus creticus (L.) from the arid land of Tunisia (2009) Afr. J. Ecol., 48, pp. 329-337
  • Rejili, M., Vadel, A.M., Guetet, A., Neffatti, M., Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae) (2007) S. Afr. J. Bot., 73, pp. 623-631
  • Sanchez, D.H., Pieckenstain, F.L., Escaray, F., Erban, A., Kraemer, U.T.E., Udvardi, M.K., Kopka, J., Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis (2011) Plant Cell Environ., 34, pp. 605-617
  • Sánchez-Blanco, M.J., Morales, M.A., Torrecillas, A., Alarcón, J.J., Diurnal and seasonal osmotic potential changes in Lotus creticus creticus plants grown under saline stress (1998) Plant Sci., 136, pp. 1-10
  • Savé, R., Biel, C., de Herralde, F., Leaf pubescence, water relations and chlorophyll fluorescence in two subespecies of Lotus creticus L. (2000) Biol. Plant., 43, pp. 239-244
  • Striker, G.G., Insausti, P., Grimoldi, A.A., Ploschuk, E.L., Vasellati, V., Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill (2005) Plant Soil, 276, pp. 301-311
  • Escaray, F.J., Rosique, F.J.C., Scambato, A.A., Bilenca, D., Carrasco, P., Matarredona, A.V., Ruiz, O.A., Menéndez, A.B., Evaluation of a technical revegetation action performed on foredunes at Devesa de la Albufera, Valencia, Spain (2010) Land Degrad. Dev., 21, pp. 239-247
  • Escaray, F.J., Scambato, A.A.F.A.V.J., Rosato, M.C.P., Ruiz, O.A., Biodiversity of Lotus spp. in Devesa of l'Albufera (Valencia, Spain) (2007) Lotus Newslett., 37, pp. 62-63
  • Rejili, M., Jaballah, S., Ferchichi, A., Understanding physiological mechanism of Lotus creticus plasticity under abiotic stress and in arid climate: a review (2008) Lotus Newslett., 38, pp. 20-36
  • Vignolio, O.R., Biel, C., de Herralde, F., Araújo-alves, J.P.L., Savé, R., Use of water-stress tolerant Lotus creticus and Cynodon dactylon in soil revegetation on different slopes in a Mediterranean climate (2005) Ann. Bot. Fenn., 42, pp. 195-205
  • Barrett-Lennard, E.G., The interaction between waterlogging and salinity in higher plants: causes, consequences and implications (2003) Plant Soil, 253, pp. 35-54
  • Bennett, S., Barrett-Lennard, E.G., Colmer, T., Salinity and waterlogging as constraints to saltland pasture production: a review (2009) Agric. Ecosyst. Environ., 129, pp. 349-360
  • Rengasamy, P., World salinization with emphasis on Australia (2006) J. Exp. Bot., 57, pp. 1017-1023
  • Rengasamy, P., Chittleborough, D., Helyar, K., Root-zone constraints and plant-based solutions for dryland salinity (2003) Plant Soil, 257, pp. 249-260
  • Real, D., Warden, J., Sandral, G.A., Colmer, T.D., Waterlogging tolerance and recovery of 10 Lotus species (2008) Aust. J. Exp. Agric., 48, pp. 480-487
  • Teakle, N.L., Tyerman, S.D., Mechanisms of Cl-transport contributing to salt tolerance (2010) Plant Cell Environ., 33, pp. 566-589
  • Vignolio, O.R., Maceira, N.O., Fernández, O.N., Efectos del anegamiento en invierno y verano sobre el crecimiento y la supervivencia de Lotus tenuis y Lotus corniculatus (1994) Ecol. Aust., 4, pp. 19-28. , (in spanish)
  • Teakle, N.L., Amtmann, A., Real, D., Colmer, T.D., Lotus tenuis tolerates combined salinity and waterlogging: maintaining O 2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport (2010) Physiol. Plant.
  • Clua, A., Orsini, H., Beltrano, J., Incidence of variable flooding period on Lotus tenuis biomass production and leaf senescence (2009) Lotus Newslett., 39, pp. 13-20
  • Teakle, N.L., Real, D., Colmer, T.D., Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis (2006) Plant Soil, 289, pp. 369-383
  • Vignolio, O.R., Fernández, O.N., Bioecología de Lotus glaber Mill. (Fabaceae) en la Pampa Deprimida (provincia de Buenos Aires, Argentina) (2006) Revista Argentina de Producción Animal, 26, pp. 113-130. , (in spanish)
  • Vignolio, O.R., Fernández, O.N., Maceira, N.O., Flooding tolerance in five populations of Lotus glaber Mill. (Syn. Lotus tenuis Waldst. et. Kit.) (1999) Aust. J. Agric. Res., 50, pp. 555-559
  • Correa, O.S., Aranda, A., Barneix, A.J., Effects of pH on growth and nodulation of two forage legumes (2001) J. Plant Nutr., 24, pp. 1367-1375
  • Stoffella, S.C., Posse, G., Collantes, M., Variabilidad fenotipica y genotipica de poblaciones de Lotus tenuis que habitan suelos con distinto pH (1998) Ecol. Aust., 8, pp. 57-63. , (in spanish)
  • Kade, M., Pagani, E.A., Mendoza, R.E., Phosphorus utilization efficiency in populations of narrow-leaf birdsfoot trefoil (2003) Commun. Soil Sci. Plant Anal., 34, pp. 271-284
  • Mendoza, R., Phosphorous nutrition and mycorrhizal growth response of broadleaf and narrowleaf birdsfoot trefoils (2001) J. Plant Nutr., 24, pp. 203-214
  • Sannazzaro, A.I., Ruiz, O.A., Albertó, E., Menéndez, A.B., Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin (2004) Mycorrhiza, 14, pp. 139-142
  • Mendoza, R., Escudero, V., Garcia, I., Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil (2005) Plant Soil, 275, pp. 305-315
  • Robinson, P.H., Grattan, S.R., Getachew, G., Grieve, C.M., Poss, J.A., Suarez, D.L., Benes, S.E., Biomass accumulation and potential nutritive value of some forages irrigated with saline-sodic drainage water (2004) Anim. Feed Sci. Technol., 111, pp. 175-189
  • Lavado, R.S., (2007) Visión sintética de la distribución y magnitud de los suelos afectados por salinidad en la Argentina, pp. 11-15. , Universidad Católica de Argentina, Córdoba, (in spanish), E. Taleisnik, K.G. Grunberg (Eds.)
  • Soriano, A., (1991) Rio de la Plata Grasslands, pp. 367-407. , Elsevier, Amsterdam-London-New York-Tokio, R.T. Coupland (Ed.)
  • León, R.J.C., Striker, G.G., Insausti, P., Perelman, S.B., Río de la Plata grasslands and Lotus tenuis (2007) Lotus Newslett., 37, pp. 67-68
  • Mazzanti, A., Montes, L., Muñón, D., Sarlangue, H., Cheppi, C., Utilización de Lotus tenuis en establecimientos ganaderos de la Pampa Deprimida: Resultados de una encuesta (1988) Revista Argentina de Producción Animal, 8, pp. 301-305. , (in spanish)
  • Dear, B.S., Moore, G.A., Hughes, S.J., Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheatbelt: a review (2003) Aust. J. Exp. Agric., 43, pp. 1-18
  • Cisneros, J.M., Degioanni, A., Cantero, J.J., Cantero, A., (2007) Caracterización y manejo de suelos salinos en el área Pampeana central, pp. 17-46. , Universidad Católica de Argentina, Córdoba, (in spanish), E. Taleisnik, K.G. Grunberg (Eds.)
  • Cauhépé, M.A., Does Lotus glaber improve beef production at the Flooding Pampas? (2004) Lotus Newslett., 34, pp. 38-43
  • Fernández, O.N., Vignolio, O.R., Maceira, N.O., Cambareri, G.S., Contribution of Lotus tenuis to the ecological services of grasslands under different productive scenarios of the Flooding Pampa, Argentina (2007) Lotus Newslett., 37, pp. 37-38
  • Insausti, P., Substitution of Lotus glaber for the dicots of a natural grassland in the flooding Pampa of Argentina (2004) Lotus Newslett., 34, pp. 34-37
  • Pieckenstain, F.L., Estrella, M.J., Sannazzaro, A., Menéndez, A.B., Fracaroli, V., Castagno, N., Echeverría, M., Ruiz, O.A., Lotus tenuis as a keystone species for the Salado River Basin (Argentine) (2007) Lotus Newslett., 37, pp. 74-75
  • Quinos, P.M., Insausti, P., Soriano, A., Facilitative effect of Lotus tenuis on Paspalum dilatatum in a lowland grassland of Argentina (1998) Oecologia, 114, pp. 427-431
  • Teakle, N.L., Snell, A., Real, D., Barrett-Lennard, E.G., Colmer, T.D., Variation in salinity tolerance, early shoot mass and shoot ion concentrations within Lotus tenuis: towards a perennial pasture legume for saline land (2010) Crop Pasture Sci., 61, pp. 379-388
  • Pesqueira, J., (2008) Cambios bioquímicos, morfológicos y ecofisiológicos en plantas del género Lotus bajo estrés salino Departamento de Biología Molecular, , Universidad Politécnica de Valencia, Valencia, 172 (in spanish)
  • Wheeler, D.M., Edmeades, D.C., Christie, R.A., Gardner, R., Effect of aluminium on the growth of 34 plant species: a summary of results obtained in low ionic strength solution culture (1992) Plant Soil, 146, pp. 61-66
  • Schachtman, D., Kelman, W., Potential of Lotus germplasm for the development of salt, aluminium and manganese tolerant pasture plants (1991) Aust. J. Agric. Res., 42, pp. 139-149
  • Foy, C.D., Chaney, R.L., White, M.C., The physiology of metal toxicity in plants (1978) Annu. Rev. Plant Physiol., 29, pp. 511-566
  • James, E.K., Crawford, R.M.M., Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions (1998) J. Exp. Bot., 49, pp. 599-609
  • Videira, I., Castro, E., Sá-Pereira, P., Simoes, F., Matos, J.A., Ferreira, E., Use of Lotus/Rhizobium symbiosis in regeneration of polluted soils (2007) Lotus Neslett., 37, pp. 87-88
  • Vara Prasad, M.N., Oliveira Freitas, H.M., Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology (2003) Electron. J. Biotechnol., 6, pp. 285-321
  • Banuelos, G.S., Mead, R., Wu, L., Beuselinck, P., Akohoue, S., Differential selenium accumulation among forage plant species grown in soils amended with selenium-enriched plant tissue (1992) J. Soil Water Conserv., 47, pp. 338-342
  • Frick, C.M., Germida, J.J., (1999), pp. 82-82. , Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites, in: Petroleum Technology Alliance of Canada, Calgary, AB; Neunhäuserer, C., Berreck, M., Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation (2001) Water Air Soil Pollut., 128, pp. 85-96
  • García De Los Santos, G., Steiner, J.J., Beuselinck, P.R., Adaptive ecology of Lotus corniculatus L. Genotipes: I.I. Crossing ability (2001) Crop Sci., 41, pp. 564-570
  • (1999) Traditional Breeding of Lotus Species, pp. 187-198. , CSSA Special Publication Number 28, Y. Papadopoulos, W. Kelman, P.R. Beuselinck (Eds.)
  • Grant, W.F., A chromosome atlas and interspecific-intergenic index for Lotus and Tetragonolobus (Fabaceae) (1995) Can. J. Bot., 73, pp. 1787-1809
  • Grant, W.F., Small, E., The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence (1996) Can. J. Bot., 74, pp. 975-989
  • Steiner, J.J., Adaptive ecology of Lotus corniculatus G. Genotypes: L.I Plant morphology and RAPD marker characterizations (2001) Crop Sci., 41, pp. 552-563
  • Razdan, M.K., Cocking, E.C., Improvement of legumes by exploring extra-specific genetic variation (1981) Euphytica, 30, pp. 819-833
  • Steiner, J.J., (1999) Birdsfoot Trefoil Origin and Germplasm Diversity, pp. 81-96. , CSSA Special Publication Number 28, Madison, Wisconsin, P.R. Beuselinck (Ed.)
  • Smith, B.M., Diaz, A., Daniels, R., Winder, L., Holland, J.M., Regional and ecotype traits in Lotus corniculatus L., with reference to restoration ecology (2009) Restor. Ecol., 17, pp. 12-23
  • Grant, W.F., List of Lotus corniculatus (Birdsfoot trefoil), L. pedunculatus (Big trefoil), L. glaber (Narrowleaf trefoil) and L. subbiflorus cultivars. Part 1. Cultivars with known or tentative country of origin (2004) Lotus Newslett., 34, pp. 12-26
  • Brewin, N.J., Development of the legume root nodule (1991) Annu. Rev. Cell Biol., 7, pp. 191-226
  • Mylona, P., Pawlowski, K., Bisseling, T., Symbiotic nitrogen fixation (1995) Plant Cell, 7, pp. 869-885
  • Bordeleau, L., Prévost, D., Nodulation and nitrogen fixation in extreme environments (1994) Plant Soil, 161, pp. 115-125
  • Zahran, H.H., Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate (1999) Microbiol. Mol. Biol. Rev., 63, pp. 968-989
  • Jarvis, B.D.W., Pankhurst, C.E., Patel, J.J., Rhizobium loti, a new species of legume root nodule bacteria (1982) Int. J. Syst. Bacteriol., 32, pp. 378-380
  • Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Tabata, S., Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (2000) DNA Res., 7, pp. 331-338
  • Baraibar, A., Frioni, L., Guedes, M.E., Ljunggren, H., Symbiotic effectiveness and ecological characterization of indigenous Rhizobium loti populations in Uruguay (1999) Pesqu. Agropecu. Bras., 34, pp. 1010-1017
  • Brockwell, J., Hebb, D.M., Kelman, W.M., Symbiotaxonomy of Lotus species and symbiotically related plants and of their root-nodule bacteria (1994) Proceedings of the First International Lotus Symposium, pp. 30-35. , P.R. Beuselink, C.A. Roberts (Eds.)
  • Irisarri, P., Milnitsky, F., Monza, J., Bedmar, E.J., Characterization of rhizobia nodulating Lotus subbiflorus from Uruguayan soils (1996) Plant Soil, 180, pp. 39-47
  • Monza, J., Fabiano, E., Arias, A., Characterization of an indigenous population of rhizobia nodulating Lotus corniculatus (1992) Soil Biol. Biochem., 24, pp. 241-247
  • Saeki, K., Kouchi, H., The Lotus symbiont, Mesorhizobium loti: molecular genetic techniques and application (2000) J. Plant Res., 113, pp. 457-465
  • Estrella, M.J., Muñoz, S., Soto, M.J., Ruiz, O., Sanjuán, J., Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina) (2009) Appl. Environ. Microbiol., 75, pp. 1088-1098
  • McDonald, I.R., Kampfer, P., Topp, E., Warner, K.L., Cox, M.J., Hancock, T.L.C., Miller, L.G., Oremland, R.S., Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments (2005) Int. J. Syst. Evol. Microbiol., 55, pp. 1827-1832
  • Lorite, M.J., Munoz, S., Olivares, J., Soto, M.J., Sanjuan, J., Characterisation of strains unlike Mesorhizobium loti that nodulate Lotus in saline soils of Granada (Spain) (2010) Appl. Environ. Microbiol., pp. 4019-4026
  • Medail, F., Quezel, P., Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin (1997) Ann. Missouri Bot. Gard., 84, pp. 112-127
  • Lorite, M.J., Donate-Correa, J., del Arco-Aguilar, M., Galdona, R.P., Sanjuán, J., León-Barrios, M., Lotus endemic to the Canary Islands are nodulated by diverse and novel rhizobial species and symbiotypes (2010) Syst. Appl. Microbiol., 33, pp. 282-290
  • León-Barrios, M., Lorite, M.J., Donate-Correa, J., Sanjuán, J., Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range (2009) Syst. Appl. Microbiol., 32, pp. 413-420
  • Zakhia, F., Jeder, H., Domergue, O., Willems, A., Gillis, M., Dreyfus, B., Lajudie, P.D., Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia (2004) Syst. Appl. Microbiol., 27, pp. 380-395
  • Han, T.X., Han, L.L., Wu, L.J., Chen, W.F., Sui, X.H., Gu, J.G., Wang, E.T., Chen, W.X., Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China (2008) Int. J. Syst. Evol. Microbiol., 58, pp. 2610-2618
  • Quadrelli, A.M., Laich, F.S., Andreoli, E., Echeverria, H.E., Respuesta de Lotus tenuis Waldst a la inoculación con Rhizobium loti y a la fertilización fosfatada (1997) Cien. Suelo, 15, pp. 22-27. , (in spanish)
  • Fabiano, E., Arias, A., Competition between a native isolate of Rhizobium leguminosarum bv trifolii and two commercial inoculant strains for nodulation of clover (1991) Plant Soil, 137, pp. 293-296
  • Sannazzaro, A.I., Bergottini, V.M., Paz, R.C., Castagno, L.N., Menéndez, A.B., Ruiz, O.A., Pieckenstain, F.L., Estrella, M.J., Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis in this region (2011) Antonie Leeuwenhoek, 99, pp. 371-379
  • Siddiqui, Z.A., Akhtar, M.S., Futai, K., (2008) Mycorrhizae: Sustainable Agriculture and Forestry, , Springer, The Netherlands
  • Smith, S.E., Read, D.J., (2008) Mycorrhizal Symbiosis, , Elsevier, Great Britain
  • Varma, A., (2008) Mycorrhiza-State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, , Springer, Berlin
  • Jakobsen, I., Rosendahl, L., Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants (1990) New Phytol., 115, pp. 77-83
  • Wright, D.P., Read, D.J., Scholes, J.D., Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. (1998) Plant Cell Environ., 21, pp. 881-891
  • Escudero, V., Mendoza, R., Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient (2005) Mycorrhiza, 15, pp. 291-299
  • Sigüenza, C., Espejel, I., Allen, E.B., Seasonality of mycorrhizae in coastal sand dunes of Baja California (1996) Mycorrhiza, 6, pp. 151-157
  • Scheublin, T.R., Ridgway, K.P., Young, J.P.W., Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities (2004) Appl. Environ. Microbiol., 70, pp. 6240-6246
  • Tibbett, M., Ryan, M.H., Barker, S.J., Chen, Y., Denton, M.D., Edmonds-Tibbett, T., Walker, C., The diversity of arbuscular mycorrhizas of selected Australian Fabaceae (2008) Plant Biosyst., 142, pp. 420-427
  • Plenchette, C., Clermont-Dauphin, C., Meynard, J.M., Fortin, J.A., Managing arbuscular mycorrhizal fungi in cropping systems (2005) Can. J. Plant Sci., 85, pp. 31-40
  • van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R., Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity (1998) Nature, 396, pp. 69-72
  • Rydlova, J., Püschel, D., Vosatka, M., Charvatova, K., Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks (2008) J. Appl. Bot. Food Qual., 82, pp. 15-20
  • Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobial symbionts (2008) Mycorrhiza, 18, pp. 317-319
  • Sannazzaro, A.I., Ruiz, A., Albertó, E.O., Menéndez, A.B., Alleviation of salt stress in Lotus glaber by Glomus intraradices (2006) Plant Soil, 285, pp. 279-287
  • Mendoza, R.E., Pagani, E.A., Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis (1997) J. Plant Nutr., 20, pp. 625-639
  • Garcia, I., Mendoza, R., Pomar, M.C., (2008) Deficit and Excess of Soil Water Impact on Plant Growth of Lotus tenuis by Affecting Nutrient Uptake and Arbuscular Mycorrhizal Symbiosis, , Springer, Dordrecht, PAYS-BAS
  • Funamoto, R., Saito, K., Oyaizu, H.M., Aono, T., (2007) Simultaneous In Situ Detection of Alkaline Phosphatase Activity and Polyphosphate in Arbuscules within Arbuscular Mycorrhizal Roots, , Commonwealth Scientific and Industrial Research Organization, Collingwood, AUSTRALIE
  • Hijikata, N., Murase, M., Tani, C., Ohtomo, R., Osaki, M., Ezawa, T., Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus (2010) New Phytol., 186, pp. 285-289
  • Bayne, H.G., Brown, M.S., Bethlenfalvay, G.J., Defoliation effects on mycorrhizal colonization, nitrogen fixation and photosynthesis in the Glycine-Glomus-Rhizobium symbiosis (1984) Physiol. Plant, 62, pp. 576-580
  • Rillig, M.C., Field, C.B., Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO 2 as a function of soil depth (2003) Plant Soil, 254, pp. 383-391
  • Augé, R.M., Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis (2001) Mycorrhiza, 11, pp. 3-42
  • Evelin, H., Kapoor, R., Giri, B., Arbuscular mycorrhizal fungi in alleviation of salt stress: a review (2009) Ann. Bot. (Lond.), 104, pp. 1263-1280
  • Pozo, M.J., Jung, S.C., López-Ráez, J.A., Azcón-Aguilar, C., Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms (2010) Arbuscular Mycorrhizas: Physiology and Function, pp. 193-207. , Springer, Netherlands, H. Koltai, Y. Kapulnik (Eds.)
  • García, I.V., Mendoza, R.E., Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil (2007) Mycorrhiza, 17, pp. 167-174
  • Sannazzaro, A.I., Echeverría, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiol. Biochem., 45, pp. 39-46
  • Riccillo, P.M., Muglia, C.I., de Bruijn, F.J., Roe, A.J., Booth, I.R., Aguilar, O.M., Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance (2000) J. Bacteriol., 182, pp. 1748-1753
  • Kulkarni, S., Surange, S., Shekhar Nautiyal, C., Crossing the limits of Rhizobium existence in extreme conditions (2000) Curr. Microbiol., 41, pp. 402-409
  • Hungria, M., Vargas, M.A.T., Environmental factors affecting N 2 fixation in grain legumes in the tropics, with an emphasis on Brazil (2000) Field Crops Res., 65, pp. 151-164
  • Sardesai, N., Babu, C.R., Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69 (2001) Microbiol. Res., 156, pp. 279-284
  • Georgiev, G.I., Atkins, C.A., Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules (1993) Symbiosis, 15, pp. 239-255
  • Delgado, M.J., Garrido, J.M., Ligero, F., Lluch, C., Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress (1993) Physiol. Plant., 89, pp. 824-829
  • López, M.J., Herrera-Cervera, A., Iribarne, C.N., Tejera, A., Lluch, C., Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism (2008) J. Plant Physiol., 165, pp. 641-650
  • Artursson, V., Finlay, R.D., Jansson, J.K., Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth (2006) Environ. Microbiol., 8, pp. 1-10
  • Schoeneberger, M.M., Volk, R.J., Davey, C.B., Factors influencing early performance of leguminous plants in forest soils (1989) Soil Sci. Soc. Am. J., 53, pp. 1429-1434
  • Staley, T.E., Lawrence, E.G., Nance, E.L., Influence of a plant growth-promoting pseudomonad and vesicular-arbuscular mycorrhizal fungus on alfalfa and birdsfoot trefoil growth and nodulation (1992) Biol. Fertil. Soils, 14, pp. 175-180
  • Gange, A.C., West, H.M., Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. (1994) New Phytol., 128, pp. 79-87
  • Gange, A.C., Ayres, R.L., On the relation between arbuscular mycorrhizal colonization and plant 'benefit' (1999) Oikos, 87, pp. 615-621
  • Gehring, C.A., Whitham, T.G., Interactions between aboveground herbivores and the mycorrhizal mutualists of plants (1994) Trends Ecol. Evol., 9, pp. 251-255
  • Goverde, M., Heijden, M.V.D., Wiemken, A., Erhardt, S.I.A., Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore (2000) Oecologia, 125, pp. 362-369
  • Nishida, T., Katayama, N., Izumi, N., Ohgushi, T., Arbuscular mycorrhizal fungi species-specifically affect induced plant responses to a spider mite (2010) Popul. Ecol., 52, pp. 507-515
  • Barker, D., Bianchi, S., Blondon, F., Dattée, Y., Duc, G., Essad, S., Flament, P., Huguet, T., Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis (1990) Plant Mol. Biol. Rep., 8, pp. 40-49
  • Handberg, K., Stougaard, J., Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics (1992) Plant J., 2, pp. 487-496
  • Kosuta, S., Winzer, T., Parniske, M., (2005) Arbuscular mycorrhiza, pp. 87-95. , Springer, Netherlands, A.J. Márquez (Ed.)
  • Akiyama, K., Hayashi, H., Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots (2006) Ann. Bot., 97, pp. 925-931
  • Deguchi, Y., Banba, M., Shimoda, Y.S., Chechetka, A., Suzuri, R., Okusako, Y., Ooki, Y., Hata, S., Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation (2007) DNA Res., 14, pp. 117-133
  • Groth, M., Takeda, N., Perry, J., Uchida, H., Draxl, S., Brachmann, A., Sato, S., Parniske, M., NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development (2010) Plant Cell, 22, pp. 2509-2526
  • Guether, M., Neuhäuser, B., Balestrini, R., Dynowski, M., Ludewig, U., Bonfante, P., A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi (2009) Plant Physiol., 150, pp. 73-83
  • Gutjahr, C., Novero, M., Guether, M., Montanari, O., Udvardi, M., Bonfante, P., Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots (2009) New Phytol., 183, pp. 53-61
  • Hayashi, T., Banba, M., Shimoda, Y., Kouchi, H., Hayashi, M., Imaizumi-Anraku, H., A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts (2010) Plant J., 63, pp. 141-154
  • Imaizumi-Anraku, H., Takeda, N., Charpentier, M., Perry, J., Miwa, H., Umehara, Y., Kouchi, H., Hayashi, M., Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots (2005) Nature, 433, pp. 527-531
  • Kistner, C., Winzer, T., Pitzschke, A., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Parniske, M., Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis (2005) Plant Cell, 17, pp. 2217-2229
  • Novero, M., Faccio, A., Genre, A., Stougaard, J., Webb, K.J., Mulder, L., Parniske, M., Bonfante, P., Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots (2002) New Phytol., 154, pp. 741-749
  • Parniske, M., Molecular genetics of the arbuscular mycorrhizal symbiosis (2004) Curr. Opin. Plant Biol., 7, pp. 414-421
  • Paszkowski, U., A journey through signaling in arbuscular mycorrhizal symbioses 2006 (2006) New Phytol., 172, pp. 35-46
  • Provorov, N.A., Borisov, A.Y., Tikhonovich, I.A., Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza (2002) J. Theor. Biol., 214, pp. 215-232
  • Solaiman, Z., Senoo, K., Interactions between Lotus japonicus genotypes and arbuscular mycorrhizal fungi (2005) J. Plant Interact., 1, pp. 179-186
  • Solaiman, Z.M., Senoo, K., Kawaguchi, M., Imaizumi-Anraku, H., Akao, S., Tanaka, A., Obata, H., Characterization of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus (2000) J. Plant Res., 113, pp. 443-448
  • Takeda, N., Kistner, C., Kosuta, S., Winzer, T., Pitzschke, A., Groth, M., Sato, S., Parniske, M., Proteases in plant root symbiosis (2007) Phytochemistry, 68, pp. 111-121
  • Uchiumi, T., Shimoda, Y., Tsuruta, T., Mukoyoshi, Y., Suzuki, A., Senoo, K., Sato, S., Abe, M., Expression of symbiotic and nonsymbiotic globin genes responding to microsymbionts on Lotus japonicus (2002) Plant Cell Physiol., 43, pp. 1351-1358
  • Wegel, E., Schauser, L., Sandal, N., Stougaard, J., Parniske, M., Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection (1998) Mol. Plant-Microbe Interact., 11, pp. 933-936
  • Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M.K., Bonfante, P., Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus (2009) New Phytol., 182, pp. 200-212
  • Høgslund, N., Radutoiu, S., Krusell, L., Voroshilova, V., Hannah, M.A., Goffard, N., Sanchez, D.H., Stougaard, J., Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants (2009) PloS ONE, 4, pp. e6556
  • Díaz, P., Betti, M., Sánchez, D.H., Udvardi, M.K., Monza, J., Márquez, A.J., Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress (2010) New Phytol., 188, pp. 1001-1013
  • Sanchez, D.H., Lippold, F., Redestig, H., Hannah, M.A., Erban, A., Krämer, U., Kopka, J., Udvardi, M.K., Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus (2008) Plant J., 53, pp. 973-987
  • Sanchez, D.H., Pieckenstain, F.L., Szymanski, J., Erban, A., Bromke, M., Hannah, M.A., Kraemer, U., Udvardi, M.K., Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics (2011) PLoS ONE, 6, pp. e17094
  • Sanchez, D.H., Szymanski, J., Erban, A., Udvardi, M.K., Kopka, J., Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus (2010) Plant Cell Environ., 33, pp. 468-480
  • Dam, S., Laursen, B.S., Ornfelt, J.H., Jochimsen, B., Staerfeldt, H.H., Friis, C., Nielsen, K., Stougaard, J., The proteome of seed development in the model legume Lotus japonicus (2009) Plant Physiol., 149, pp. 1325-1340
  • Desbrosses, G.G., Kopka, J., Udvardi, M.K., Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions (2005) Plant Physiol., 137, pp. 1302-11302
  • Sanchez, D.H., Siahpoosh, M.R., Roessner, U., Udvardi, M., Kopka, J., Plant metabolomics reveals conserved and divergent metabolic responses to salinity (2008) Physiol. Plant., 132, pp. 209-219
  • Mochida, K., Shinozaki, K., Genomics and bioinformatics resources for crop improvement (2010) Plant Cell Physiol., 51, pp. 497-523
  • Sandal, N., Krusell, L., Radutoiu, S., Olbryt, M., Pedrosa, A., Stracke, S., Sato, S., Stougaard, J., A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci (2002) Genetics, 161, pp. 1673-1683
  • Sandal, N., Petersen, T.R., Murray, J., Umehara, Y., Karas, B., Yano, K., Kumagai, H., Stougaard, J., Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci (2006) Mol. Plant-Microbe Interact., 19, pp. 80-91
  • Hayashi, M., Miyahara, A., Sato, S., Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population (2001) DNA Res., 8, pp. 301-310

Citas:

---------- APA ----------
Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P.,..., Ruiz, O.A. (2012) . Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 182(1), 121-133.
http://dx.doi.org/10.1016/j.plantsci.2011.03.016
---------- CHICAGO ----------
Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., et al. "Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils" . Plant Science 182, no. 1 (2012) : 121-133.
http://dx.doi.org/10.1016/j.plantsci.2011.03.016
---------- MLA ----------
Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., et al. "Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils" . Plant Science, vol. 182, no. 1, 2012, pp. 121-133.
http://dx.doi.org/10.1016/j.plantsci.2011.03.016
---------- VANCOUVER ----------
Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., et al. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci. 2012;182(1):121-133.
http://dx.doi.org/10.1016/j.plantsci.2011.03.016