Artículo

Fontan, C.F.; Gratton, F.T. "Large orbit plasma stability theory" (1988) Nuclear Inst. and Methods in Physics Research, A. 271(1):100-106
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A new analysis of the low frequency flute modes for the large ion orbit migma configuration is reported. Results are given for the triple delta distribution function of ions. The theory for the m = 1 mode shows an important reduction of the instability gap, when compared with conventional small Larmor radius treatments. The Migma IV experiment, which did not experience flute instability, was well within the unstable density range of thermal plasma calculations, and partially overlaps or lies below the unstable gap of the new theory. The second part of the paper considers microinstabilities. An explanation of the stabilization, by a negative bias potential, of the Harris instability observed in Migma IV is suggested. A localized unstable radial mode driven by ion counterstreaming at the center is discussed. Single particle orbit behavior for finite p 2 has been studied to ascertain losses that may arise due to stochasticity. Results indicate accurate conservation of the adiabatic invariant for orbits with axial energy up to 25% of the total kinetic energy. Finally, some stability problems of the high density diamagnetic migma regime are outlined. © 1988.

Registro:

Documento: Artículo
Título:Large orbit plasma stability theory
Autor:Fontan, C.F.; Gratton, F.T.
Filiación:Laboratorio de Fisica del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Ions; Magnetic Fields; Landau Damping; Migma 4 Experiment; Plasmas
Año:1988
Volumen:271
Número:1
Página de inicio:100
Página de fin:106
DOI: http://dx.doi.org/10.1016/0168-9002(88)91130-8
Título revista:Nuclear Inst. and Methods in Physics Research, A
Título revista abreviado:Nucl Instrum Methods Phys Res Sect A
ISSN:01689002
CODEN:NIMAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689002_v271_n1_p100_Fontan

Referencias:

  • Al Salameh, Channon, Chew, Leverton, Maglich, Menasian, Miller, Wu, Experiment with stored 0.7-MeV ions: Observation of stability properties of a nonthermal plasma (1985) Physical Review Letters, 54, p. 796
  • Mikhailovskii, (1974) Theory of Plasma Instabilities, 2. , Plenum, New York, chap. 6
  • Berk, Wong, (1987) Z. Naturforsch., 42 A, p. 1208
  • Ferro Fontán, Sicardi Schifino, González, (1987) Emerging Niclear Energy Systems, p. 401. , World Scientific, Singapore
  • Symon, Seyler, Lewis, (1982) J. Plasma Phys., 27, p. 13
  • Seyler, Lewis, (1982) J. Plasma Phys., 27, p. 37
  • Barnes, Schwarzmeier, Lewis, Seyler, Kinetic tilting stability of field-reversed configurations (1986) Physics of Fluids, 29, p. 2616
  • Berk, Rosenbluth, Wong, Proc. Int. Symp. on Feasibility of Aneutronic Power (1988) Nucl. Instr. and Meth., 271 A, p. 107. , these Proceedings, Princeton, NJ, 1987
  • Harris, (1959) Phys. Rev. Lett., 2, p. 34
  • Burt, Harris, (1961) Phys. Fluids, 4, p. 1412
  • Gnavi, Gratton, (1987) Phys. Rev., 36 A, p. 2315
  • Gratton, Gnavi, Two-stream instability in convergent geometry (1987) Physics of Fluids, 30, p. 548
  • Lee, Birdsall, (1979) Phys. Fluids, 22, p. 1315
  • Gerver, Birdsall, Langdon, Fuss, (1977) Phys. Fluids, 20, p. 291
  • Hall, Heckrotte, Kammash, Ion Cyclotron Electrostatic Instabilities (1965) Physical Review, 139, p. 1117
  • Timofeev, Pistunovich, (1970) Rev. Plasma. Phys., 5, pp. 401-445. , Consultants Bureau, New York
  • Rosenbluth, Post, (1965) Phys. Fluids, 8, p. 547
  • Dory, Guest, Harris, (1965) Phys. Rev. Lett., 14, p. 131
  • Jong, Kammash, (1972) Nucl. Fus., 12, p. 545
  • Shima, Fowler, (1965) Phys. Fluids, 8, p. 2245
  • Melrose, (1986) Instabilities in Space and Laboratory Plasmas, p. 234. , Cambridge University Press
  • Tsytovich, (1977) Theory of Turbulent Plasma, p. 172. , Consultants Bureau, New York
  • Macek, Maglich, (1970) Part. Accel., 1, p. 121
  • Gratton, Lara, (1982) Rev. Brasileira de Fisica, 2 Especial, p. 512
  • Gratton, Lara, (1987) Emerging Nuclear Energy Systems, p. 404. , World Scientific, Singapore
  • Post, Brandenburg, (1981) Nucl. Fus., 21, p. 1633
  • Lara, Ferro Fontán, Gratton, Bifurcation of solutions of a field-reversed cylindrical model (1986) Physics of Fluids, 29, p. 2332
  • Morse, (1967) Phys. Fluids, 10, p. 1017
  • Gratton, Lara, (1983) Actas II Jornadas Latino-americanas de Matemática Aplicada, 2, p. 808. , Rio de Janeiro
  • Lara, Ferro Font'an, Gratton, (1987) Emerging Nuclear Energy Systems, p. 397. , World Scientific, Singapore
  • Davidson, Ogden, (1975) Phys. Fluids, 18, p. 1045

Citas:

---------- APA ----------
Fontan, C.F. & Gratton, F.T. (1988) . Large orbit plasma stability theory. Nuclear Inst. and Methods in Physics Research, A, 271(1), 100-106.
http://dx.doi.org/10.1016/0168-9002(88)91130-8
---------- CHICAGO ----------
Fontan, C.F., Gratton, F.T. "Large orbit plasma stability theory" . Nuclear Inst. and Methods in Physics Research, A 271, no. 1 (1988) : 100-106.
http://dx.doi.org/10.1016/0168-9002(88)91130-8
---------- MLA ----------
Fontan, C.F., Gratton, F.T. "Large orbit plasma stability theory" . Nuclear Inst. and Methods in Physics Research, A, vol. 271, no. 1, 1988, pp. 100-106.
http://dx.doi.org/10.1016/0168-9002(88)91130-8
---------- VANCOUVER ----------
Fontan, C.F., Gratton, F.T. Large orbit plasma stability theory. Nucl Instrum Methods Phys Res Sect A. 1988;271(1):100-106.
http://dx.doi.org/10.1016/0168-9002(88)91130-8