Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Latent heat flux (LE) and corresponding water loss in non-moisture-limited ecosystems are well correlated to radiation and temperature. By contrast, in savannahs and arid and semi-arid lands LE is mostly driven by available water and the vegetation exerts a strong control over the rate of transpiration. Therefore, LE models that use optical vegetation indices (VIs) to represent the vegetation component (transpiration as a function of surface conductance, Gs) generally overestimate water fluxes in water-limited ecosystems. In this study, we evaluated and compared optical and passive microwave index based retrievals of Gs and LE derived using the Penman-Monteith (PM) formulation over the North Australian Tropical Transect (NATT). The methodology was evaluated at six eddy covariance (EC) sites from the OzFlux network. To parameterize the PM equation for retrievals of LE (PM-Gs), a subset of Gs values was derived from meteorological and EC flux observations and regressed against individual and combined satellite indices, from (1) MODIS AQUA: the Normalized Difference Water Index (NDWI) and the Enhanced Vegetation Index (EVI); and from (2) AMSR-E passive microwave: frequency index (FI), polarization index (PI), vegetation optical depth (VOD) and soil moisture (SM) products. Similarly, we combined optical and passive microwave indices (multi-sensor model) to estimate weekly Gs values, and evaluated their spatial and temporal synergies. The multi-sensor approach explained 40–80% of LE variance at some sites, with root mean square errors (RMSE) lower than 20 W/m2 and demonstrated better performance to other satellite-based estimates of LE. The optical indices represented potential Gs associated with the phenological status of the vegetation (e.g. leaf area index, chlorophyll content) at finer spatial resolution. The microwave indices provided information about water availability and moisture stress (e.g. water content in leaves and shallow soil depths, atmospheric demand) at a high temporal resolution, thereby providing a scaling factor for potential Gs. We applied the newly proposed Gs model to estimate LE at regional scale using global meteorological data. Our derivation could be extended to continental scales providing equally robust estimates of LE in arid and semi-arid biomes. A more accurate estimation of Gs and LE across different savannah classes will improve the analysis of water use efficiency under drought conditions, which is of importance to climate change studies of water, carbon and energy cycling. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data
Autor:Barraza, V.; Restrepo-Coupe, N.; Huete, A.; Grings, F.; Beringer, J.; Cleverly, J.; Eamus, D.
Filiación:Instituto de Astronomía y Física del Espacio (IAFE-UBA-CONICET), CABA, Buenos Aires, Argentina
Climate Change Cluster, University of Technology Sydney (UTS)NSW 2007, Australia
School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia
School of Life Sciences, University of Technology Sydney (UTS)NSW 2007, Australia
Australian Supersite Network, Terrestrial Ecosystem Research Network, The University of Western Australia, Crawley, WA 6009, Australia
Australian Supersite Network, Terrestrial Ecosystem Research Network, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
Palabras clave:Latent heat flux; Microwave indices; North Australian Tropical Transect; Optical indices; OzFlux; Surface conductance; AMSR-E; Aqua (satellite); arid region; climate change; drought; estimation method; latent heat flux; microwave radiation; MODIS; optical depth; phenology; savanna; semiarid region; shallow soil; soil moisture; spatiotemporal analysis; temperature effect; tropical region; vegetation cover; water availability; water use efficiency; Australia
Año:2017
Volumen:232
Página de inicio:689
Página de fin:703
DOI: http://dx.doi.org/10.1016/j.agrformet.2016.10.013
Título revista:Agricultural and Forest Meteorology
Título revista abreviado:Agric. For. Meterol.
ISSN:01681923
CODEN:AFMEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v232_n_p689_Barraza

Referencias:

  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56 (1998), p. 6541. , FAO Rome (300); Barraza, V., Grings, F., Ferrazzoli, P., Huete, A., Restrepo-Coupe, N., Beringer, J., Van Gorsel, E., Karszenbaum, H., Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems (2014) J. Geophys. Res. Biogeosci., 119. , (2014JG002626)
  • Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Van Gorsel, E., Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems (2015) Agric. For. Meteorol., 213, pp. 126-137
  • Beringer, J., Hutley, L.B., Hacker, J.M., Neininger, B., Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: from point to region (2011) Agric. For. Meteorol., 151, pp. 1409-1416
  • Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Wardlaw, T., An introduction to the Australian and New Zealand flux tower network – OzFlux (2016) Biogeosci. Discuss., pp. 1-52
  • Bowman, W.D., The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves (1989) Remote Sens. Environ., 30, pp. 249-255
  • Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W., Regional evaporation estimates from flux tower and MODIS satellite data (2007) Remote Sens. Environ., 106, pp. 285-304
  • Cleverly, J., Eamus, D., Restrepo Coupe, N., Chen, C., Maes, W., Li, L., Faux, R., Huete, A., Soil moisture controls on phenology and productivity in a semi-arid critical zone (2016) Sci. Total Environ.
  • Collatz, G.J., Ball, J.T., Grivet, C., Berry, J.A., Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer (1991) Agric. For. Meteorol., 54, pp. 107-136
  • Eamus, D., O'Grady, A.P., Hutley, L., Dry season conditions determine wet season water use in the wet-tropical savannas of northern Australia (2000) Tree Physiol., 20, pp. 1219-1226
  • Eamus, D., Cleverly, J., Boulain, N., Grant, N., Faux, R., Villalobos-Vega, R., Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of seasonal patterns and responses to rainfall events (2013) Agric. For. Meteorol., 182-183, pp. 225-238
  • Foken, T., The energy balance closure problem – an overview (2008) Ecol. Appl., 18, pp. 1351-1367
  • Glenn, E.P., Huete, A.R., Nagler, P.L., Hirschboeck, K.K., Brown, P., Integrating remote sensing and ground methods to estimate evapotranspiration (2007) Crit. Rev. Plant Sci., 26, pp. 139-168
  • File Specification for GEOSDAS Gridded Output Version 5.3, Report (2004), Global Modeling & Assimilation Office NASA Goddard Space Flight Cent Greenbelt, Md; Goudriaan, J., A simple and fast numerical method for the computation of daily totals of crop photosynthesis (1986) Agric. For. Meteorol, 38, pp. 249-254
  • Guerschman, J.P., Van Dijk, A.I.J.M., Mattersdorf, G., Beringer, J., Hutley, L.B., Leuning, R., Pipunic, R.C., Sherman, B.S., Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia (2009) J. Hydrol., 369, pp. 107-119
  • Hardisky, M.S., The influence of soil salinity, growth form and leaf moisture on the spectral radiance of Spartina alterniflora canopies, Photogramm. Eng (1983) Remote Sens., 48, pp. 77-84
  • Harris, P.P., Huntingford, C., Cox, P.M., Gash, J.H.C., Malhi, Y., Effect of soil moisture on canopy conductance of Amazonian rainforest (2004) Agric. For. Meteorol., 122, pp. 215-227
  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sens. Environ., 83, pp. 195-213
  • Hutley, L.B., Beringer, J., Isaac, P.R., Hacker, J.M., Cernusak, L.A., A sub-continental scale living laboratory: spatial patterns of savanna vegetation over a rainfall gradient in northern Australia (2011) Agric. For. Meteorol., 151, pp. 1417-1428
  • Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C., Beringer, J., OzFlux data: network integration from collection to curation (2016) Biogeosci. Discuss., pp. 1-41
  • Jackson, R.D., Idso, S.B., Reginato, R.J., Pinter, P.J., Canopy temperature as a crop water stress indicator (1981) Water Resour. Res., 17, pp. 1133-1138
  • Jarvis, P.G., The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field (1976) Philos. Trans. R. Soc. Lond. B Biol. Sci., 273, pp. 593-610
  • Kalma, J.D., McVicar, T.R., McCabe, M.F., Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data (2008) Surv. Geophys., 29, pp. 421-469
  • Kanniah, K.D., Beringer, J., Hutley, L.B., Environmental controls on the spatial variability of savanna productivity in the northern territory, Australia (2011) Agric. For. Meteorol., 151, pp. 1429-1439
  • Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Shibata, A., Spencer, R.W., The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies (2003) IEEE Trans. Geosci. Remote Sens., 41, pp. 184-194
  • Kelliher, F.M., Leuning, R., Raupach, M.R., Schulze, E.-D., Maximum conductances for evaporation from global vegetation types (1995) Agric. For. Meteorol., 73, pp. 1-16
  • Koch, G.W., Vitousek, P.M., Steffen, W.L., Walker, B.H., Terrestrial transects for global change research (1995) Vegetatio, 121, pp. 53-65
  • Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K., A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation (2008) Water Resour. Res., 44, p. W10419
  • Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., Reflections on the surface energy imbalance problem (2012) Agric. For. Meteorol., 156, pp. 65-74
  • Li, R., Min, Q., Lin, B., Estimation of evapotranspiration in a mid-latitude forest using the microwave emissivity difference vegetation index (EDVI) (2009) Remote Sens. Environ., 113, pp. 2011-2018
  • Lipton, A.E., Liang, P., Jiménez, C., Moncet, J.-L., Aires, F., Prigent, C., Lynch, R., Uymin, G., Sources of discrepancies between satellite-derived and land surface model estimates of latent heat fluxes (2015) J. Geophys. Res. Atmos., 120. , (2014JD022641)
  • Liu, Y.Y., Dijk, A.I., McCabe, M.F., Evans, J.P., Jeu, R.A., 2013. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers (2013) Glob. Ecol. Biogeogr., 22, pp. 692-705
  • Ma, X., Huete, A., Yu, Q., Coupe, N.R., Davies, K., Broich, M., Ratana, P., Eamus, D., Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect (2013) Remote Sens. Environ., 139, pp. 97-115
  • Mahrt, L., Pan, H., A two-layer model of soil hydrology (1984) Bound. Layer Meteorol., 29, pp. 1-20
  • Matsumoto, K., Ohta, T., Tanaka, T., Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables (2005) Agric. For. Meteorol., 132, pp. 44-57
  • Min, Q., Lin, B., Remote sensing of evapotranspiration and carbon uptake at Harvard Forest (2006) Remote Sens. Environ., 100, pp. 379-387
  • Monteith, J.L., Unsworth, M.H., Chapter 3 – transport of heat, mass, and momentum (2013) Principles of Environmental Physics, pp. 25-35. , fourth edition Academic Press Boston
  • Monteith, J.L., Evaporation from land surfaces: progress in analysis and prediction since 1948 (1985) Advances in Evapotranspiration. Presented at the Proceedings of the ASAE Conference on Evapotranspiration, Chicago, pp. 4-12
  • Moran, M.S., Jackson, R.D., Assessing the spatial distribution of evapotranspiration using remotely sensed inputs (1991) J. Environ. Qual., 20, p. 725
  • Mu, Q., Zhao, M., Running, S.W., Improvements to a MODIS global terrestrial evapotranspiration algorithm (2011) Remote Sens. Environ., 115, pp. 1781-1800
  • Mu, Q., Development of a global evapotranspiration algorithm based on MODIS and global meteorology data (2007) Remote Sens. Environ., 111, pp. 519-536
  • Nemani, R., Pierce, L., Running, S., Band, L., Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed leaf area index estimates (1993) Int. J. Remote Sens., 14, pp. 2519-2534
  • NVIS, Australia's Native Vegetation – A summary of Australia's Major Vegetation Groups (2007), Australian government Camberrra ISBN 0642552940; Owe, M., de Jeu, R., Holmes, T., Multisensor historical climatology of satellite-derived global land surface moisture (2008) J. Geophys. Res. Earth Surf., 113, p. F01002
  • Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A., Dzikiti, S., Validation of global evapotranspiration product (MOD16) using flux tower data in the African Savanna, South Africa (2014) Remote Sens., 6, pp. 7406-7423
  • Restrepo-Coupe, N., Huete, A., Davies, K., Cleverly, J., Beringer, J., Eamus, D., van Gorsel, E., Meyer, W.S., MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity (2015) Biogeosci. Discuss., 12, pp. 19213-19267
  • Richardson, A.D., Hollinger, D.Y., Burba, G.G., Davis, K.J., Flanagan, L.B., Katul, G.G., William Munger, J., Wofsy, S.C., A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes (2006) Agric. For. Meteorol., 136, pp. 1-18
  • Rigden, A.J., Salvucci, G.D., Evapotranspiration based on equilibrated relative humidity (ETRHEQ): evaluation over the continental U.S.: evapotranspiration based on ETRHEQ (2015) Water Resour. Res., 51, pp. 2951-2973
  • Ryu, Y., Baldocchi, D.D., Black, T.A., Detto, M., Law, B.E., Leuning, R., Miyata, A., Vesala, T., On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums (2012) Agric. For. Meteorol., 152, pp. 212-222
  • Salvucci, G.D., Gentine, P., Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data (2013) Proc. Natl. Acad. Sci., 110, pp. 6287-6291
  • Schubert, S.D., Rood, R.B., Pfaendtner, J., An assimilated dataset for earth science applications (1993) Bull. Am. Meteorol. Soc., 74, pp. 2331-2342
  • Sea, W.B., Choler, P., Beringer, J., Weinmann, R.A., Hutley, L.B., Leuning, R., Documenting improvement in leaf area index estimates from MODIS using hemispherical photos for Australian savannas (2011) Agric. For. Meteorol., 151, pp. 1453-1461
  • Shi, H., Li, L., Eamus, D., Cleverly, J., Huete, A., Beringer, J., Yu, Q., van Hutley, L., Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes (2014) Environ. Res. Lett., 9, p. 104002
  • Sims, D.A., Rahman, A.F., Cordova, V.D., Baldocchi, D.D., Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y., Xu, L., Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux (2005) Agric. For. Meteorol., 131, pp. 1-12
  • Stewart, J.B., Modelling surface conductance of pine forest (1988) Agric. For. Meteorol., 43, pp. 19-37
  • Suppiah, R., The Australian summer monsoon: a review (1992) Prog. Phys. Geogr., 16, pp. 283-318
  • Walker, J.P., Merlin, O., Panciera, R., Kalma, J.D., National airborne field experiments for soil moisture remote sensing (2006) Proceedings of the 30th Hydrology and Water Resources Symposium, Launceston, Tasmania, Australia, , http://users.monash.edu.au/∼jpwalker/papers/hwrs06-1.pdf, Available at: (accessed 21.10.16)
  • Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D., A comparison of methods for determining forest evapotranspiration and its components: sap-flow soil water budget, eddy covariance and catchment water balance (2001) Agric. For. Meteorol., 106, pp. 153-168
  • Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Verma, S., Energy balance closure at FLUXNET sites (2002) Agric. For. Meteorol., 113, pp. 223-243. , (FLUXNET 2000 Synthesis)
  • Wolf, A., Ashalov, K., Saliendra, N., Johnson, D.A., Laca, E.A., Inverse estimation of Vcmax, leaf area index, and the Ball-Berry parameter from carbon and energy fluxes (2006) J. Geophys Res. D: Atmos., p. D08S08
  • Yebra, M., Van Dijk, A., Leuning, R., Huete, A., Guerschman, J.P., Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance (2013) Remote Sens. Environ., 129, pp. 250-261
  • Zhang, Y., Leuning, R., Hutley, L.B., Beringer, J., McHugh, I., Walker, J.P., Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution (2010) Water Resour. Res., 46. , n/a–n/a
  • Zhang, Y.-J., Meinzer, F.C., Qi, J.-H., Goldstein, G., Cao, K.-F., Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees (2013) Plant Cell Environ., 36, pp. 149-158
  • Zhao, L., Lee, X., Liu, S., Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America (2013) J. Geophys. Res. Atmos., 118, pp. 9552-9564

Citas:

---------- APA ----------
Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Beringer, J., Cleverly, J. & Eamus, D. (2017) . Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data. Agricultural and Forest Meteorology, 232, 689-703.
http://dx.doi.org/10.1016/j.agrformet.2016.10.013
---------- CHICAGO ----------
Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Beringer, J., Cleverly, J., et al. "Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data" . Agricultural and Forest Meteorology 232 (2017) : 689-703.
http://dx.doi.org/10.1016/j.agrformet.2016.10.013
---------- MLA ----------
Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Beringer, J., Cleverly, J., et al. "Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data" . Agricultural and Forest Meteorology, vol. 232, 2017, pp. 689-703.
http://dx.doi.org/10.1016/j.agrformet.2016.10.013
---------- VANCOUVER ----------
Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Beringer, J., Cleverly, J., et al. Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data. Agric. For. Meterol. 2017;232:689-703.
http://dx.doi.org/10.1016/j.agrformet.2016.10.013