Artículo

Darqui, F.S.; Radonic, L.M.; Trotz, P.M.; López, N.; Vázquez Rovere, C.; Hopp, H.E.; López Bilbao, M. "Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants" (2018) Journal of Biotechnology. 283:62-69
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Snakin-1 is a cysteine-rich antimicrobial peptide (AMP) isolated from potato tubers, with broad-spectrum activity. It belongs to the Snakin/GASA family, whose members have been studied because of their diverse roles in important plant processes, including defense. To analyze if this defensive function may lead to disease tolerance in lettuce, one of the most worldwide consumed leafy vegetable, we characterized three homozygous transgenic lines overexpressing Snakin-1. They were biologically assessed by the inoculation with the fungal pathogens Rhizoctonia solani and Sclerotinia sclerotiorum both in vitro and in planta at the greenhouse. When in vitro assays were performed with R. solani on Petri dishes containing crude plant extracts it was confirmed that the expressed Snakin-1 protein has antimicrobial activity. Furthermore, transgenic lines showed a better response than wild type in in vivo challenges against R. solani both in chamber and in greenhouse. In addition, two of these lines showed significant in vivo protection against the pathogen S. sclerotiorum in challenge assays on adult plants. Our results show that Snakin-1 is an interesting candidate gene for the selection/breeding of lettuce plants with increased fungal tolerance. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants
Autor:Darqui, F.S.; Radonic, L.M.; Trotz, P.M.; López, N.; Vázquez Rovere, C.; Hopp, H.E.; López Bilbao, M.
Filiación:Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Antimicrobial peptide; Challenge trials; Lettuce; Phytopathogens; Snakin-1; Transgenesis; Amino acids; Genes; Greenhouses; Microorganisms; Peptides; Plant extracts; Antimicrobial peptide; Challenge trials; Lettuce; Phytopathogens; Snakin-1; Transgenesis; Pathogens; polypeptide antibiotic agent; protein Snakin 1; unclassified drug; plant protein; reactive oxygen metabolite; SN1 protein, Solanum tuberosum; adult plant; antifungal activity; Article; controlled study; fungal plant disease; fungal strain; gene overexpression; greenhouse; in vitro study; in vivo study; infection resistance; nonhuman; plant breeding; plant gene; plant immunity; potato; priority journal; protection; Rhizoctonia solani; Sclerotinia sclerotiorum; snakin 1 gene; transgenic plant; wild type; Ascomycetes; disease resistance; genetics; growth, development and aging; lettuce; metabolism; microbiology; pathogenicity; plant disease; plant leaf; prevention and control; Rhizoctonia; transgenic plant; Ascomycota; Disease Resistance; Lettuce; Plant Diseases; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Reactive Oxygen Species; Rhizoctonia
Año:2018
Volumen:283
Página de inicio:62
Página de fin:69
DOI: http://dx.doi.org/10.1016/j.jbiotec.2018.07.017
Título revista:Journal of Biotechnology
Título revista abreviado:J. Biotechnol.
ISSN:01681656
CODEN:JBITD
CAS:Plant Proteins; Reactive Oxygen Species; SN1 protein, Solanum tuberosum
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681656_v283_n_p62_Darqui

Referencias:

  • Abawi, G., Grogan, R., Epidemiology of diseases caused by Sclerotinia species (1979) Phytopathology, 69, pp. 899-904
  • Adams, P., Ayers, W., Ecology of Sclerotinia species (1979) Phytopathology, 69, pp. 896-899
  • Almasia, N.I., Bazzini, A.A., Hopp, H.E., Vazquez-Rovere, C., Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and erwinia carotovora in transgenic potato plants (2008) Mol. Plant Pathol., 9, pp. 329-338
  • Almasia, N.I., Molinari, M.P., Maroniche, G.A., Nahirñak, V., Barrios Barón, M.P., Taboga, O.A., Rovere, C.V., Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies (2017) BMC Biotechnol., 17
  • Aubert, D., Chevillard, M., Dorne, A.M., Arlaud, G., Herzog, M., Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions (1998) Plant Mol. Biol., 36, pp. 871-883
  • Beracochea, V.C., Almasia, N.I., Peluffo, L., Nahirñak, V., Hopp, E.H., Paniego, N., Heinz, R.A., Lia, V.V., Sunflower germin-like protein HaGLP1 promotes ROS accumulation and enhances protection against fungal pathogens in transgenic Arabidopsis thaliana (2015) Plant Cell Rep., 34, pp. 1717-1733
  • Berrocal-Lobo, M., Segura, A., Moreno, M., López, G., García-Olmedo, F., Molina, A., Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection (2002) Plant Physiol., 128, pp. 951-961
  • Bolton, M.D., Thomma, B.P.H.J., Nelson, B.D., Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen (2006) Mol. Plant Pathol., 7, pp. 1-16
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Darqui, F.S., Radonic, L.M., López, N., Hopp, H.E., Bilbao, M.L., Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce (2017) Electron. J. Biotechnol., 31, pp. 1-9
  • Di Rienzo, J., fgStatistics. Statistical Software for the Analysis of Experiments of Functional Genomics (2012), http://www.infostat.com.ar; Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C., InfoStat (2016), http://www.infostat.com.ar; Dias, B.B.A., Cunha, W.G., Morais, L.S., Vianna, G.R., Rech, E.L., Capdeville, G., De Aragão, F.J.L., Expression of an oxalate decarboxylase gene from flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum (2006) Plant Pathol., 55, pp. 187-193
  • Dinant, S., Maisonneuve, B., Albouy, J., Chupeau, Y., Chupeau, M.-C., Bellec, Y., Gaudefroy, F., Lot, H., Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains (1997) Mol. Breed., 3, pp. 75-86
  • Faccio, P., Hopp, E., González, G., Paleo, A.D., Franzone, P., Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense snakin-1 gene (2011) Czech J. Genet. Plant Breed., 47, pp. 135-141
  • Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens (2005) Annu. Rev. Phytopathol., 43, pp. 205-227
  • Govindarajulu, M., Epstein, L., Wroblewski, T., Michelmore, R.W., Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce (2015) Plant Biotechnol. J., 13, pp. 875-883
  • Granval de Millán, N., Gaviola, J.C., Fascículo 4: lechuga (1991) Manual de Producción de Semillas Hortícolas, pp. 3-6. , https://inta.gob.ar/documentos/manual-de-produccion-de-semillas-horticolas.-lechuga, J. Crnko Asociación Cooperadora de la Estación Experimental Agropecuaria La Consulta INTA
  • Heller, J., Tudzynski, P., Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease (2011) Annu. Rev. Phytopathol., 49, pp. 369-390
  • Herr, L.J., Host sources, virulence and overwinter survival of Rhizoctonia solani anastomosis groups isolated from field lettuce with bottom rot symptoms (1993) Crop Prot., 12, pp. 521-526
  • Kawazu, Y., Fujiyama, R., Imanishi, S., Fukuoka, H., Yamaguchi, H., Matsumoto, S., Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus (2016) Transgenic Res., 25, pp. 711-719
  • Kuddus, R., Rumi, F., Tsutsumi, M., Takahashi, R., Yamano, M., Kamiya, M., Kikukawa, T., Aizawa, T., Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris (2016) Protein Expr. Purif., 122, pp. 15-22
  • Leone, G., Tonneijck, A.E.G., A rapid procedure for screening the resistance of bean cultivars (Phaseolus vulgaris L.) to Botrytis cinerea and Sclerotinia sclerotiorum (1990) Euphytica, 48, pp. 87-90
  • López-Solanilla, E., González-Zorn, B., Novella, S., Vázquez-Boland, J.A., Rodríguez-Palenzuela, P., Susceptibility of Listeria monocytogenes to antimicrobial peptides (2003) FEMS Microbiol. Lett., 226, pp. 101-105
  • Mikel, M.A., Genealogy of contemporary North American lettuce (2007) HortScience, 42, pp. 489-493
  • Mou, B., Nutritional quality of lettuce (2012) Curr. Nutr. Food Sci., 8, pp. 177-187
  • Nahirñak, V., Almasia, N.I., Fernandez, P.V., Hopp, H.E., Estevez, J.M., Carrari, F., Vazquez-Rovere, C., Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition (2012) Plant Physiol., 158, pp. 252-263
  • Nahirñak, V., Almasia, N.I., Hopp, H.E., Vazquez-Rovere, C., Snakin/GASA proteins. Involvement in hormone crosstalk and redox homeostasis (2012) Plant Signal. Behav., 7, pp. 1-5
  • Nguyen, L.T., Haney, E.F., Vogel, H.J., The expanding scope of antimicrobial peptide structures and their modes of action (2011) Trends Biotechnol., 29, pp. 464-472
  • Okubara, P.A., Arroyo-garcia, R., Shen, K.A., Mazier, M., Meyers, B.C., Ochoa, O.E., Kim, S., Michelmore, R.W., A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance (1997) Mol. Plant-Microbe Interact., 10, pp. 970-977
  • Purdy, L.H., Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact (1979) Phytopathology, 69, pp. 875-880
  • Radonic, L., New Strategies for the Transformation and Expression of Genes of Interest in Sunflower. PhD Thesis (2010), Universidad de Buenos Aires; Raid, R.N., Lettuce diseases and their management (2004) Diseases of Fruits and Vegetables. Diagnosis and Management, II, pp. 121-148. , S.A.M.H. Naqvi Kluwer Academic Publishers
  • Rong, W., Qi, L., Wang, J., Du, L., Xu, H., Wang, A., Zhang, Z., Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. Tritici in transgenic wheat (2013) Funct. Integr. Genomics, 13, pp. 403-409
  • Rubinovich, L., Weiss, D., The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta (2010) Plant J., 64, pp. 1018-1027
  • Ruijter, J.M., Ramakers, C., Hoogaars, W.M.H., Karlen, Y., Bakker, O., van den Hoff, M.J.B., Moorman, A.F.M., Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data (2009) Nucleic Acids Res., 37, p. e45
  • Schneider, C., Rasband, W.S., Eliceiri, K.W., NIH image to imageJ: 25 years of image analysis (2012) Nat. Methods, 9, pp. 671-675
  • Segura, A., Moreno, M., Madueño, F., Molina, A., García-Olmedo, F., Snakin-1, a peptide from potato that is active against plant pathogens (1999) Mol. Plant-Microbe Interact., 12, pp. 16-23
  • Stotz, H.U., Waller, F., Wang, K., Innate immunity in plants: the role of antimicrobial peptides (2013) Antimicrobial Peptides and Innate Immunity, PrOgress in Inflammation Research, pp. 29-52. , P.S. Hiemstra S.A.J. Zaat Springer Basel
  • Subbarao, K.V., Progress toward integrated management of lettuce drop (1998) Plant Dis., 82, pp. 1068-1078
  • Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B., Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction (1997) Plant J., 11, pp. 1187-1194
  • Van Beneden, S., Pannecoucque, J., Debode, J., De Backer, G., Hofte, M., Characterisation of fungal pathogens causing basal rot of lettuce in Belgian greenhouses (2009) Eur. J. Plant Pathol., 124, pp. 9-19
  • Wareing, P.W., Wang, Z.-N., Coley-Smith, J.R., Fungal pathogens in rotted basal leaves of lettuce in Humberside and ZLancashire with particular reference to Rhizoctonia solani (1986) Plant Pathol., 35, pp. 390-395
  • Whipps, J.M., Budge, S.P., McClement, S., Pink, D.A.C., A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum (2002) Eur. J. Plant Pathol., 108, pp. 373-378
  • Wigoda, N., Ben-Nissan, G., Granot, D., Schwartz, A., Weiss, D., The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity (2006) Plant J., 48, pp. 796-805
  • Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel, H.J., Overmyer, K., Kangasjärvi, J., Langebartels, C., Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone (2002) Plant Cell Environ., 25, pp. 717-726

Citas:

---------- APA ----------
Darqui, F.S., Radonic, L.M., Trotz, P.M., López, N., Vázquez Rovere, C., Hopp, H.E. & López Bilbao, M. (2018) . Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants. Journal of Biotechnology, 283, 62-69.
http://dx.doi.org/10.1016/j.jbiotec.2018.07.017
---------- CHICAGO ----------
Darqui, F.S., Radonic, L.M., Trotz, P.M., López, N., Vázquez Rovere, C., Hopp, H.E., et al. "Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants" . Journal of Biotechnology 283 (2018) : 62-69.
http://dx.doi.org/10.1016/j.jbiotec.2018.07.017
---------- MLA ----------
Darqui, F.S., Radonic, L.M., Trotz, P.M., López, N., Vázquez Rovere, C., Hopp, H.E., et al. "Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants" . Journal of Biotechnology, vol. 283, 2018, pp. 62-69.
http://dx.doi.org/10.1016/j.jbiotec.2018.07.017
---------- VANCOUVER ----------
Darqui, F.S., Radonic, L.M., Trotz, P.M., López, N., Vázquez Rovere, C., Hopp, H.E., et al. Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants. J. Biotechnol. 2018;283:62-69.
http://dx.doi.org/10.1016/j.jbiotec.2018.07.017