Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Citrus canker provoked by Xanthomonas axonopodis pv. citri is a bacterial disease causing severe losses in all citrus-producing areas around the world. Xanthomonas infection is considered as an endemic disease in Northeast and Northwest Argentina, affecting as much as 10% of commercial citrus plantations. There is not known natural resistance neither in orange varieties nor in rootstocks used for grafting of commercial cultivars. To introduce resistance to this disease, plants of Pineapple sweet orange were transformed with a genetic construct allowing constitutive accumulation of dermaseptin. In comparison with non-transformed plants, transgenic plants showed symptom reduction levels of up to 50% in in planta assays performed under controlled conditions. © 2013 Elsevier B.V.

Registro:

Documento: Artículo
Título:Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease
Autor:Furman, N.; Kobayashi, K.; Zanek, M.C.; Calcagno, J.; García, M.L.; Mentaberry, A.
Filiación:Laboratorio de Agrobiotecnología, Departamento de Fisiología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Instituto Superior de Investigaciones (ISI), Universidad de Maimónides, C.A.B.A., Argentina
Palabras clave:Antibacterial resistance; Canker disease; Dermaseptin; Transgenic orange; Canker disease; Commercial cultivars; Controlled conditions; Dermaseptin; Natural resistance; Northwest Argentina; Transgenics; Xanthomonas axonopodis; Plants (botany); Citrus fruits; dermaseptin; article; canker; citrus canker; controlled study; genetic transformation; infection resistance; nonhuman; priority journal; sweet orange; transgenic plant; Antibacterial resistance; Canker disease; Dermaseptin; Transgenic orange; Agrobacterium tumefaciens; Amphibian Proteins; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Citrus sinensis; Drug Resistance, Bacterial; Gene Expression Regulation, Plant; Open Reading Frames; Plant Diseases; Plant Leaves; Plants, Genetically Modified; Transformation, Genetic; Xanthomonas
Año:2013
Volumen:167
Número:4
Página de inicio:412
Página de fin:419
DOI: http://dx.doi.org/10.1016/j.jbiotec.2013.07.019
Título revista:Journal of Biotechnology
Título revista abreviado:J. Biotechnol.
ISSN:01681656
CODEN:JBITD
CAS:dermaseptin, 136212-91-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681656_v167_n4_p412_Furman

Referencias:

  • Amiche, M., Galanth, C., Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides (2011) Current Pharmaceutical Biotechnology, 12, pp. 1184-1193
  • Bassanezi, R.B., Belasque Junior, J., Massari, C.A., Current situation, management and economic impact of citrus canker in São Paulo and minas gerais, Brazil (2009) International Workshop on Citrus Quarantine Pests, , http://www.calcitrusquality.org/wp-content/uploads/2009/05/current-situation-management-and-economic-impact-of-citrus1.pdf, Fundecitrus
  • Boscariol, R.L., Monteiro, M., Takahashi, E.K., Chabregas, S.M., Vieira, M.L.C., Vieira, L.G.E., Pereira, L.F.P., Christiano, R.S.C., Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis 'Hamlin' (2006) Journal of the American Society for Horticultural Science, 131, pp. 530-536
  • Bové, J.M., Huanglongbing: a destructive, newly-emerging, century-old disease of citrus (2006) Journal of Plant Pathology, 88, pp. 7-37
  • Bronson, C.H., Gaskalla, R., (2007) Comprehensive Report on Citrus Canker in Florida, , Florida Department of Agriculture and Consumer Services, Division of Plant Industry
  • Brunings, A.M., Gabriel, D.W., Xanthomonas citri: breaking the surface (2003) Molecular Plant Pathology, 4, pp. 141-157
  • Canteros, B.I., Management of citrus canker in Argentina. A review (2004) Proceedings International Society of Citriculture 2004 International Citrus Congress, vol. 2, pp. 696-704
  • Collinge, D.B., Jorgensen, H.J., Lund, O.S., Lyngkjaer, M.F., Engineering pathogen resistance in crop plants: current trends and future prospects (2010) Annual Review of Phytopathology, 48, pp. 269-291
  • Coote, P.J., Holyoak, C.D., Bracey, D., Ferdinando, D.P., Pearce, J.A., Inhibitory action of a truncated derivative of the amphibian skin peptide dermaseptin S3 on Saccharomyces cerevisiae (1998) Antimicrobial Agents and Chemotherapy, 42, pp. 2160-2170
  • Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., Sheen, J., Engineered GFP as a vital reporter in plants (1996) Current Biology, 6, pp. 325-330
  • Church, G.M., Gilbert, W., Genomic sequencing (1984) Proceedings of the National Academy of Sciences of the United States of America, 81, pp. 1991-1995
  • De Lucca, A.J., Bland, J.M., Grimm, C., Jacks, T.J., Cary, J.W., Jaynes, J.M., Cleveland, T.E., Walsh, T.J., Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1 (1998) Canadian Journal of Microbiology, 44, pp. 514-520
  • Dellaporta, S.L., Chomet, P.S., Mottinger, J.P., Wood, J.A., Yu, S.M., Hicks, J.B., Endogenous transposable elements associated with virus infection in maize (1984) Cold Spring Harbor Symposia on Quantitative Biology, 49, pp. 321-328
  • FederCitrus, (2011) La Actividad Citrícola Argentina 2011, , Federación Argentina del Citrus
  • Fu, X.-Z., Chen, C.-W., Wang, Y., Liu, J.-H., Moriguchi, T., Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration (2011) BMC Plant Biology, 11, p. 55
  • Gottwald, T.R., Graham, J.H., Schubert, T.S., Citrus canker: the pathogen and its impact (2002) Plant Health Progress
  • Graham, J.H., Gottwald, T.R., Cubero, J., Achor, D.S., Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker (2004) Molecular Plant Pathology, 5, pp. 1-15
  • Hartung, J.S., Beretta, J., Brlansky, R.H., Spisso, J., Lee, R.F., Citrus variegated chlorosis bacterium: axenic culture, pathogenicity, and serological relationships with other strains of Xylella fastidiosa (1994) American Phytopathological Society, 84, pp. 591-597
  • Hernandez, C., Mor, A., Dagger, F., Nicolas, P., Hernandez, A., Benedetti, E.L., Dunia, I., Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin (1992) European Journal of Cell Biology, 59, pp. 414-424
  • Huerga, M., San Juan, S., (2005) El control de las plagas en la agricultura Argentina, , http://siteresources.worldbank.org/INTARGENTINAINSPANISH/Resources/InformeDEF14.pdf, Estudio Sectorial Agrícola Rural - Banco Mundial/Centro de Inversiones FAO
  • Kastin, A.J., (2006) Handbook of Biologically Active Peptides, , http://www.elsevier.com/books/handbook-of-biologically-active-peptides/kastin/978-0-12-369442-3
  • Ko, K., Norelli, J.L., Reynoird, J.-P., Aldwinckle, H.S., Brown, S.K., T4 lysozyme and attacin genes enhance resistance of transgenic 'Galaxy' apple against Erwinia amylovora (2002) Journal of the American Society for Horticultural Science, 127, pp. 515-519
  • McDowell, J.M., Woffenden, B.J., Plant disease resistance genes: recent insights and potential applications (2003) Trends in Biotechnology, 21, pp. 178-183
  • Metz, M., Dahlbeck, D., Morales, C.Q., Al Sady, B., Clark, E.T., Staskawicz, B.J., The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana (2005) Plant Journal, 41, pp. 801-814
  • Mor, A., Nicolas, P., The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity (1994) Journal of Biological Chemistry, 269, pp. 1934-1939
  • Mor, A., Hani, K., Nicolas, P., The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms (1994) Journal of Biological Chemistry, 269, pp. 31635-31641
  • Navon-Venezia, S., Feder, R., Gaidukov, L., Carmeli, Y., Mor, A., Antibacterial properties of dermaseptin S4 derivatives with in vivo activity (2002) Antimicrobial Agents and Chemotherapy, 46, pp. 689-694
  • Osusky, M., Osuska, L., Kay, W., Misra, S., Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2 (2005) Theoretical and Applied Genetics, 111, pp. 711-722
  • Peña, L., Cervera, M., Juárez, J., Navarro, A., Pina, J., Durán-Vila, N., Navarro, L., Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants (1995) Plant Cell Reports, 14, pp. 616-619
  • Rivero, M., Furman, N., Mencacci, N., Picca, P., Toum, L., Lentz, E., Bravo-Almonacid, F., Mentaberry, A., Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens (2012) Journal of Biotechnology, 157, pp. 334-343
  • Sharma, A., Sharma, R., Imamura, M., Yamakawa, M., Machii, H., Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice (2000) FEBS Letters, 484, pp. 7-11
  • Yang, L., Hu, C., Li, N., Zhang, J., Yan, J., Deng, Z., Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease (2010) Plant Molecular Biology, 75, pp. 11-23
  • Yaron, S., Rydlo, T., Shachar, D., Mor, A., Activity of dermaseptin K4-S4 against foodborne pathogens (2003) Peptides, 24, pp. 1815-1821

Citas:

---------- APA ----------
Furman, N., Kobayashi, K., Zanek, M.C., Calcagno, J., García, M.L. & Mentaberry, A. (2013) . Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. Journal of Biotechnology, 167(4), 412-419.
http://dx.doi.org/10.1016/j.jbiotec.2013.07.019
---------- CHICAGO ----------
Furman, N., Kobayashi, K., Zanek, M.C., Calcagno, J., García, M.L., Mentaberry, A. "Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease" . Journal of Biotechnology 167, no. 4 (2013) : 412-419.
http://dx.doi.org/10.1016/j.jbiotec.2013.07.019
---------- MLA ----------
Furman, N., Kobayashi, K., Zanek, M.C., Calcagno, J., García, M.L., Mentaberry, A. "Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease" . Journal of Biotechnology, vol. 167, no. 4, 2013, pp. 412-419.
http://dx.doi.org/10.1016/j.jbiotec.2013.07.019
---------- VANCOUVER ----------
Furman, N., Kobayashi, K., Zanek, M.C., Calcagno, J., García, M.L., Mentaberry, A. Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. J. Biotechnol. 2013;167(4):412-419.
http://dx.doi.org/10.1016/j.jbiotec.2013.07.019