Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ability of galacto-oligosaccharides (GOS) to protect Lactobacillus delbrueckii subsp. bulgaricus upon freeze drying was analyzed on the basis of their capacity to form glassy structures. Glass transition temperatures (T g) of a GOS matrix at various relative humidities (RH) were determined by DSC. Survival of L. bulgaricus in a glassy GOS matrix was investigated after freezing, freeze drying, equilibration at different RHs and storage at different temperatures. At 32°C, a drastic viability loss was observed. At 20°C, the survival was affected by the water content, having the samples stored at lower RHs, the highest survival percentages. At 4°C, no decay in the cells count was observed after 45days of storage. The correlation between molecular mobility [as measured by Proton nuclear magnetic resonance ( 1H NMR)] and loss of viability explained the efficiency of GOS as cryoprotectants. The preservation of microorganisms was improved at low molecular mobility and this condition was obtained at low water contents and low storage temperatures. These results are important in the developing of new functional foods containing pre and probiotics. © 2012 Elsevier B.V.

Registro:

Documento: Artículo
Título:Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix
Autor:Tymczyszyn, E.E.; Sosa, N.; Gerbino, E.; Hugo, A.; Gómez-Zavaglia, A.; Schebor, C.
Filiación:Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Conicet La Plata, UNLP, (1900) La Plata, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria (1428) CABA, Argentina
Palabras clave:Freeze drying; Galacto-oligosaccharides; Lactobacillus; Membrane damage; Molecular mobility; Water activity; cryoprotective agent; galactose oligosaccharide; article; bacterial survival; bacterial viability; bacterium; controlled study; cryoprotection; freeze drying; freezing; glass transition temperature; humidity; lactobacillus bulgaricus; nonhuman; proton nuclear magnetic resonance; storage; storage temperature; water content; Cell Membrane; Colony Count, Microbial; Cryoprotective Agents; Freeze Drying; Humidity; Lactobacillus; Microbial Viability; Oligosaccharides; Probiotics; Transition Temperature; Water; Lactobacillus; Lactobacillus delbrueckii subsp. bulgaricus
Año:2012
Volumen:155
Número:3
Página de inicio:217
Página de fin:221
DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.008
Título revista:International Journal of Food Microbiology
Título revista abreviado:Int. J. Food Microbiol.
ISSN:01681605
CODEN:IJFMD
CAS:Cryoprotective Agents; Oligosaccharides; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681605_v155_n3_p217_Tymczyszyn

Referencias:

  • Angell, C.A., Perspectives on the glass transition (1988) Journal of Physics and Chemistry of Solids, 49, pp. 863-870
  • Cacela, C., Hincha, D.K., Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes (2006) Biochimica et Biophysica Acta, 1758, pp. 680-691
  • Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P., Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus (2004) Biotechnology Progress, 20, pp. 248-254
  • Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Anhydrobiosis (1992) Annual Review of Physiology, 54, pp. 579-599
  • De Man, J.O., Rogosa, M., Sharpe, M.E., A medium for the cultivation of lactobacilli (1960) Journal of Applied Bacteriology, 23, pp. 130-135
  • Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical Magnetic Resonance Imaging, pp. 115-155. , VCH, Verlagsgesellschaft, New York, F.W. Wehrli, D. Shaw, J.B. Kneeland (Eds.)
  • Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A., Roberfroid, M.B., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics (2004) Nutrition Research Reviews, 17, pp. 259-275
  • Gómez-Zavaglia, A., Abraham, A.G., Giorgieri, S., De Antoni, G.L., Application of polyacrylamide gel electrophoresis and capillary gel electrophoresis to the analysis of Lactobacillus delbrueckii whole-cell proteins (1999) Journal of Dairy Science, 82, pp. 870-877
  • Higl, B., Kurtmann, L., Carlsen, C.U., Ratjen, J., Forst, P., Skibsted, L.H., Kulozik, U., Risbo, J., Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix (2007) Biotechnology Progress, 23, pp. 794-800
  • Hills, B.P., Wang, Y.L., Tang, H.R., Molecular dynamics in concentrated sugar solutions and glasses: an NMR field cycling study (2001) Molecular Physics, 99 (19), pp. 1679-1687
  • Kalichevsky, M.T., Blanshard, J.M.V., A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein, and gluten using DMA and DMTA (1992) Carbohydrate Polymers, 19, pp. 271-278
  • Leslie, S., Israeli, E., Lighthart, B., Crowe, J.H., Crowe, L.M., Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying (1995) Applied and Environmental Microbiology, 61, pp. 3592-3597
  • Lievense, L.C., Verbeek, M.A.M., Noomen, A., van 't Riet, K., Mechanism of dehydration inactivation of Lactobacillus plantarum (1994) Applied Microbiology and Biotechnology, 41, pp. 90-94
  • Lodato, P., Segovia de Huergo, M., Buera, M.P., Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices (1999) Applied Microbiology and Biotechnology, 52, pp. 215-220
  • Meng, X.C., Stanton, C., Fitzgerald, G.F., Daly, C., Ross, R.P., Anhydrobiotics: the challenges of drying probiotic cultures (2008) Food Chemistry, 106, pp. 1406-1416
  • Miao, S., Mills, S., Stanton, C., Fitzgerald, G.F., Roos, Y.H., Ross, R.P., Effect of disaccharides on survival during storage of freeze dried probiotics (2008) Dairy Science & Technology, 88, pp. 19-30
  • Morgan, C.A., Herman, N., White, P.A., Vesey, G., Preservation of microorganisms by drying: a review (2006) Journal of Microbiological Methods, 66, pp. 183-193
  • Neri, D.M.F., Balcão, V.M., Costa, R.S., Rocha, I.C.A.P., Ferreira, E.M.F.C., Torres, D.P.M., Rodrigues, L.R.M., Teixeira, J.A., Galacto-oligosaccharide production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol (2009) Food Chemistry, 115, pp. 92-99
  • Oldenhof, H., Wolkers, W., Fonseca, F., Passot, S., Marin, M., Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: an in situ Fourier Transform Infrared Spectroscopy study (2005) Biotechnology Progress, 21, pp. 885-892
  • Playne, M.J., Crittenden, R.G., Galacto-oligosaccharides and other products derived from lactose (2009) Advanced Dairy Chemistry Volume 3: Lactose, Water, Salts and Minor Constituents, pp. 121-201. , Springer, Berlin, P.F. Fox, P. McSweeney (Eds.)
  • Roos, Y.H., (1995) Phase Transitions in Food, , Academic Press, New York
  • Santivarangkna, C., Wenning, M., Foerst, P., Kulozik, U., Damage of cell envelope of Lactobacillus helveticus during vacuum drying (2007) Journal of Applied Microbiology, 102, pp. 748-756
  • Santivarangkna, C., Higl, B., Foerst, P., Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures (2008) Food Microbiology, 25, pp. 429-441
  • Schebor, C., Galvagno, M., Buera, M.D., Chirife, J., Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts (2000) Biotechnology Progress, 16, pp. 163-168
  • Schoonman, A., Ubbink, J., Bisperink, C., Le Meste, M., Karel, M., Solubility and diffusion of nitrogen in maltodextrin/protein tablets (2002) Biotechnology Progress, 18, pp. 139-154
  • Schwab, C., Vogel, R., Ganzle, M.G., Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying (2007) Cryobiology, 55, pp. 108-114
  • Texeira, P.M., Castro, H., Mohácsi-Farkas, C., Kirby, R., Identification of sites of injury in Lactobacillus bulgaricus during heat stress (1997) Journal of Applied Microbiology, 83, pp. 219-226
  • Torres, D.P.M., Bastos, M., Gonzalves, M.P.F., Teixeira, J.A., Rodrigues, L.R., Water sorption and plasticization of an amorphous galacto-oligosaccharide mixture (2011) Carbohydrate Polymers, 83, pp. 831-835
  • Tromp, R.H., Parker, R., Ring, S.G., Water diffusion in glasses of carbohydrates (1997) Carbohydrate Research, 303, pp. 199-205
  • Tymczyszyn, E.E., Díaz, M.R., Gómez-Zavaglia, A., Disalvo, E.A., Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose (2007) Journal of Applied Microbiology, 103, pp. 2410-2419
  • Tymczyszyn, E.E., Gerbino, E., Illanes, A., Gómez-Zavaglia, A., Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus (2011) Cryobiology, 62, pp. 123-129
  • Vera, C., Guerrero, C., Illanes, A., Conejeros, R., A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae (2011) Biotechnology and Bioengineering, 108, pp. 2270-2279
  • Wang, Y., Prebiotics: present and future in food science and technology (2009) Food Research International, 42, pp. 8-12
  • Wouters, P.C., Bos, A.P., Ueckert, J., Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields (2001) Applied and Environmental Microbiology, 67, pp. 3092-3101

Citas:

---------- APA ----------
Tymczyszyn, E.E., Sosa, N., Gerbino, E., Hugo, A., Gómez-Zavaglia, A. & Schebor, C. (2012) . Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. International Journal of Food Microbiology, 155(3), 217-221.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.008
---------- CHICAGO ----------
Tymczyszyn, E.E., Sosa, N., Gerbino, E., Hugo, A., Gómez-Zavaglia, A., Schebor, C. "Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix" . International Journal of Food Microbiology 155, no. 3 (2012) : 217-221.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.008
---------- MLA ----------
Tymczyszyn, E.E., Sosa, N., Gerbino, E., Hugo, A., Gómez-Zavaglia, A., Schebor, C. "Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix" . International Journal of Food Microbiology, vol. 155, no. 3, 2012, pp. 217-221.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.008
---------- VANCOUVER ----------
Tymczyszyn, E.E., Sosa, N., Gerbino, E., Hugo, A., Gómez-Zavaglia, A., Schebor, C. Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. Int. J. Food Microbiol. 2012;155(3):217-221.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.008