Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Time processing in the few hundred milliseconds range is involved in the human skill of sensorimotor synchronization, like playing music in an ensemble or finger tapping to an external beat. In finger tapping, a mechanistic explanation in biologically plausible terms of how the brain achieves synchronization is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to evoke other nonlinear effects like saturation. We build a nonlinear mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations. While previous authors have used two different model mechanisms for fitting different perturbation types, or have fitted different parameter value sets for different perturbation magnitudes, we propose the first unified description of the behavior following all perturbation types and magnitudes as the dynamical response of a compound model with fixed terms and a single set of parameter values. © 2012 Elsevier B.V.

Registro:

Documento: Artículo
Título:Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
Autor:Bavassi, M.L.; Tagliazucchi, E.; Laje, R.
Filiación:Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, R.S. Peña 352, Bernal B1876BXD, Argentina
Department of Neurobiology, University of California, Box 951761, Los Angeles, CA 90095, United States
CONICET, Av. Rivadavia 1917, C1033AAJ CABA, Argentina
Departamento de Física, Universidad de Buenos Aires, Pabellón I Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Palabras clave:Dynamical systems analysis; Error correction; Modeling; Synchronization; Tapping; adult; article; auditory feedback; behavior; female; finger; genetic algorithm; human; male; mathematical model; nonlinear system; prediction; sensorimotor function; simulation; Acoustic Stimulation; Adaptation, Psychological; Attention; Awareness; Discrimination (Psychology); Humans; Memory, Short-Term; Models, Theoretical; Motor Activity; Nonlinear Dynamics; Psychomotor Performance; Subliminal Stimulation; Time Perception
Año:2013
Volumen:32
Número:1
Página de inicio:21
Página de fin:47
DOI: http://dx.doi.org/10.1016/j.humov.2012.06.002
Título revista:Human Movement Science
Título revista abreviado:Hum. Mov. Sci.
ISSN:01679457
CODEN:HMSCD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01679457_v32_n1_p21_Bavassi

Referencias:

  • Aschersleben, G., Temporal control of movements in sensorimotor synchronization (2002) Brain and Cognition, 48, pp. 66-79
  • Beudel, M., Renken, R., Leenders, K.L., de Jong, B.M., Cerebral representations of space and time (2009) NeuroImage, 44, pp. 1032-1040
  • Buhusi, C.V., Meck, W.H., What makes us tick? Functional and neural mechanisms of interval timing (2005) Nature Reviews Neuroscience, 6, pp. 755-765
  • Buonomano, D.V., Laje, R., Population clocks: Motor timing with neural dynamics (2010) Trends in Cognitive Sciences, 14, pp. 520-527
  • Chen, Y., Ding, M., Kelso, J.A.S., Long memory processes (1/fa type) in human coordination (1997) Physical Review Letters, 79, pp. 4501-4504
  • Del Olmo, M.F., Cheeran, B., Koch, G., Rothwell, J.C., Role of the cerebellum in externally paced rhythmic finger movements (2008) Journal of Neurophysiology, 98, pp. 145-152
  • Drake, C., Botte, M.-C., Tempo sensitivity in auditory sequences: Evidence for a multiple-look model (1993) Perception and Psychophysics, 54, pp. 277-286
  • Drewing, K., Aschersleben, G., Reduced timing variability during bimanual coupling: A role for sensory information (2003) The Quarterly Journal of Experimental Psychology, 56 A, pp. 329-350
  • Engbert, R., Krampe, R.T., Kurths, J., Kliegl, R., Synchronizing movements with the metronome: Nonlinear error correction and unstable periodic orbits (2002) Brain and Cognition, 48, pp. 107-116
  • Gibbs, C.B., Probability learning in step-input tracking (1965) British Journal of Psychology, 56, pp. 233-242
  • Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., The neural basis of intermittent motor control in humans (2002) Proceedings of the National Academy of Science Uniteed States of America, 99, pp. 2299-2302
  • Haken, H., Kelso, J.A.S., Bunz, H., A theoretical model of phase transitions in human hand movements (1985) Biological Cybernetics, 51, pp. 347-356
  • Hary, D., Moore, G.P., Synchronizing human movement with an external clock source (1987) Biological Cybernetics, 56, pp. 305-311
  • Hary, D., Moore, G.P., Temporal tracking and synchronization strategies (1987) Human Neurobiology, 4, pp. 73-77
  • Hirsh, I.J., Auditory perception of temporal order (1959) Journal of the Acoustical Society of America, 31, pp. 759-767
  • Hirsh, I.J., Sherrick, C.E., Perceived order in different sense modalities (1961) Journal of Experimental Psicology, 62, pp. 423-432
  • Ivry, R.B., Schlerf, J.E., Dedicated and intrinsic models of time perception (2008) Trends in Cognitive Sciences, 12, pp. 273-280
  • Ivry, R.B., Spencer, R.M.C., The neural representation of time (2004) Current Opinion in Neurobiology, 14, pp. 225-232
  • Large, E.W., On synchronizing movements to music (2000) Human Movement Science, 19, pp. 527-566
  • Large, E.W., Fink, P., Kelso, J.A.S., Tracking simple and complex sequences (2002) Psychological Research, 66, pp. 3-17
  • Large, E.W., Jones, M.R., The dynamics of attending: How people track time-varying events (1999) Psychological Review, 106, pp. 119-159
  • Lewis, P.A., Miall, R.C., Brain activation patterns during measurements of sub- and supra-second intervals (2003) Neuropsychologia, 41, pp. 1583-1592
  • Loehr, J.D., Large, E.W., Palmer, C., Temporal coordination and adaptation to rate change in music performance (2011) Journal of Experimental Psychology: Human Perception and Performance, 37, pp. 1292-1309
  • Madison, G., Merker, B., Human sensorimotor tracking of continuous subliminal deviations from isochrony (2004) Neuroscience Letters, 370, pp. 69-73
  • Manto, M., Bastian, A.J., Cerebellum and the deciphering of motor coding (2007) The Cerebellum, 6, pp. 3-6
  • Mates, J., A model of synchronization of motor acts to a stimulus sequence: I. Timing and error corrections (1994) Biological Cybernetics, 70, pp. 463-473
  • Mates, J., A model of synchronization of motor acts to a stimulus sequence: I. Stability analysis, error estimation and simulations (1994) Biological Cybernetics, 70, pp. 475-484
  • Mauk, M.D., Buonomano, D.V., The neural basis of temporal processing (2004) Annual Review of Neuroscience, 27, pp. 307-340
  • McAuley, J.D., Kidd, G.R., Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences (1998) Journal of Experimental Psicology: Human Perception and Performance, 24, pp. 1786-1800
  • Meck, W.H., Neuropsychology of timing and time perception (2005) Brain and Cognition, 58, pp. 1-8
  • Michon, J.A., (1967) Timing in temporal tracking, , van Gorcum, Assen, The Netherlands
  • Panda, S., Hogenesch, J.B., Kay, S.A., Circadian rhythms from flies to human (2002) Nature, 417, pp. 329-335
  • Praamstra, P., Turgeon, M., Hesse, C.W., Wing, A.M., Perryer, L., Neurophysiological correlates of error correction in sensorimotor-synchronization (2003) NeuroImage, 20, pp. 1283-1297
  • Pressing, J., Error correction processes in temporal pattern production (1998) Journal of Mathematical Psychology, 42, pp. 63-101
  • Pressing, J., Jolley-Rogers, G., Spectral properties of human cognition and skill (1997) Biological Cybernetics, 76, pp. 339-347
  • Repp, B.H., Compensation for subliminal timing perturbations in perceptual-motor synchronization (2000) Psychological Research, 63, pp. 106-128
  • Repp, B.H., Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization (2001) Journal of Experimental Psychology: Human Perception and Performance, 27, pp. 600-621
  • Repp, B.H., Processes underlying adaptation to tempo changes in sensorimotor synchronization (2001) Human Movement Science, 20, pp. 277-312
  • Repp, B.H., Automaticity and voluntary control of phase correction following event onset shifts in sensorimotor synchronization (2002) Journal of Experimental Psychology: Human Perception and Performance, 28, pp. 410-430
  • Repp, B.H., Phase correction in sensorimotor synchronization: Nonlinearities in voluntary and involuntary responses to perturbations (2002) Human Movement Science, 21, pp. 1-37
  • Repp, B.H., Sensorimotor synchronization: A review of the tapping literature (2005) Psychonomic Bulletin and Review, 12, pp. 969-992
  • Repp, B.H., Rate limits in sensorimotor synchronization with auditory and visual sequences: The synchronization threshold and the benefits and costs of interval subdivision (2003) Journal of Motor Behavior, 4, pp. 355-370
  • Repp, B.H., Multiple temporal references in sensorimotor synchronization with metrical auditory sequences (2008) Psychological Research, 72, pp. 79-98
  • Repp, B.H., Tapping in synchrony with a perturbed metronome: The phase correction response to small and large phase shifts as a function of tempo (2011) Journal of Motor Behavior, 43, pp. 213-227
  • Repp, B.H., Temporal evolution of the phase correction response in synchronization of taps with perturbed two-interval rhythms (2011) Experimental Brain Research, 208, pp. 89-101
  • Repp, B.H., Keller, P.E., Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness (2004) Quarterly Journal of Experimental Psychology, 57 A, pp. 499-521
  • Repp, B.H., Keller, P.E., Jacoby, N., Quantifying phase correction in sensorimotor synchronization: Empirical comparison of three paradigms (2012) Acta Psychologica, 139, pp. 281-290
  • Schachner, A., Brady, T.F., Pepperberg, I.M., Hauser, M.D., Spontaneous motor entrainment to music in multiple vocal mimicking species (2009) Current Biology, 19, pp. 831-836
  • Schöner, G., Timing, clocks, and dynamical systems (2002) Brain and Cognition, 48, pp. 31-51
  • Schulze, H.-H., The error correction model for the tracking of a random metronome: Statistical properties and an empirical test (1992) Time, action, and cognition: Towards bridging the gap, pp. 275-286. , Kluwer, Dordrecht, F. Macar, V. Pouthas, W.J. Friedman (Eds.)
  • Schulze, H.-H., Cordes, A., Vorberg, D., Keeping synchrony while tempo changes: Accelerando and ritardando (2005) Music Perception, 22, pp. 461-477
  • Semjen, A., Schulze, H.-H., Vorberg, D., Timing precision in continuation and synchronization tapping (2000) Psychological Research, 63, pp. 137-147
  • Semjen, A., Vorberg, D., Schulze, H.-H., Getting synchronized with the metronome: Comparisons between phase and period correction (1998) Psychological Research, 61, pp. 44-55
  • Stevens, L.T., On the time-sens (1886) Mind os-XI, pp. 393-404
  • Thaut, M.H., Miller, R.A., Schauer, L.M., Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period correction (1998) Biological Cybernetics, 79, pp. 241-250
  • Vorberg, D., Schulze, H.-H., Linear phase-correction in synchronization: predictions, parameter estimation, and simulations (2002) Journal of Mathematical Pschology, 46, pp. 56-87
  • Wagenmakers, E.-J., Farrell, S., Ratcliff, R., Estimation and interpretation of 1/fα noise in human cognition (2004) Psychonomic Bulletin & Review, 11, pp. 579-615
  • Wing, A.M., Kristofferson, A.B., Response delays and the timing of discrete motor responses (1973) Perception and Psychophysics, 14, pp. 5-12

Citas:

---------- APA ----------
Bavassi, M.L., Tagliazucchi, E. & Laje, R. (2013) . Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Human Movement Science, 32(1), 21-47.
http://dx.doi.org/10.1016/j.humov.2012.06.002
---------- CHICAGO ----------
Bavassi, M.L., Tagliazucchi, E., Laje, R. "Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism" . Human Movement Science 32, no. 1 (2013) : 21-47.
http://dx.doi.org/10.1016/j.humov.2012.06.002
---------- MLA ----------
Bavassi, M.L., Tagliazucchi, E., Laje, R. "Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism" . Human Movement Science, vol. 32, no. 1, 2013, pp. 21-47.
http://dx.doi.org/10.1016/j.humov.2012.06.002
---------- VANCOUVER ----------
Bavassi, M.L., Tagliazucchi, E., Laje, R. Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Hum. Mov. Sci. 2013;32(1):21-47.
http://dx.doi.org/10.1016/j.humov.2012.06.002