Artículo

Alcántara, I.; Piccini, C.; Segura, A.M.; Deus, S.; González, C.; Martínez de la Escalera, G.; Kruk, C. "Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach" (2018) Journal of Microbiological Methods. 151:20-27
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Microcystis aeruginosa complex (MAC) clusters many of the most common freshwater and brackish bloom-forming cyanobacteria. In monitoring protocols, biovolume estimation is a common approach to determine MAC colonies biomass and useful for prediction purposes. Biovolume (μm3 mL−1) is calculated multiplying organism abundance (orgL−1) by colonial volume (μm3org−1). Colonial volume is estimated based on geometric shapes and requires accurate measurements of dimensions using optical microscopy. A trade-off between easy-to-measure but low-accuracy simple shapes (e.g. sphere) and time costly but high-accuracy complex shapes (e.g. ellipsoid) volume estimation is posed. Overestimations effects in ecological studies and management decisions associated to harmful blooms are significant due to the large sizes of MAC colonies. In this work, we aimed to increase the precision of MAC biovolume estimations by developing a statistical model based on two easy-to-measure dimensions. We analyzed field data from a wide environmental gradient (800 km) spanning freshwater to estuarine and seawater. We measured length, width and depth from ca. 5700 colonies under an inverted microscope and estimated colonial volume using three different recommended geometrical shapes (sphere, prolate spheroid and ellipsoid). Because of the non-spherical shape of MAC the ellipsoid resulted in the most accurate approximation, whereas the sphere overestimated colonial volume (3–80) especially for large colonies (MLD higher than 300 μm). Ellipsoid requires measuring three dimensions and is time-consuming. Therefore, we constructed different statistical models to predict organisms depth based on length and width. Splitting the data into training (2/3) and test (1/3) sets, all models resulted in low training (1.41–1.44%) and testing average error (1.3–2.0%). The models were also evaluated using three other independent datasets. The multiple linear model was finally selected to calculate MAC volume as an ellipsoid based on length and width. This work contributes to achieve a better estimation of MAC volume applicable to monitoring programs as well as to ecological research. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach
Autor:Alcántara, I.; Piccini, C.; Segura, A.M.; Deus, S.; González, C.; Martínez de la Escalera, G.; Kruk, C.
Filiación:Sección Limnología, IECA, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
Ecología Funcional de Sistemas Acuáticos, CURE-Rocha, Universidad de la República, Ruta nacional Nª 9, Rocha, PC 27000, Uruguay
Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Avenida Italia 3318, Montevideo, 11600, Uruguay
Modelización y Análisis de Recursos Naturales, CURE-Rocha, Universidad de la República, Ruta nacional Nª 9, Rocha, PC 27000, Uruguay
Laboratorio de Limnología, DEGE, Exactas y Naturales, UBA – Centro de Investigaciones, Agua y Saneamientos Argentinos, Int Güiraldes 2160, Buenos Aires, 1428, Argentina
Palabras clave:Cyanobacteria monitoring; Harmful algal blooms; Machine learning; Phytoplankton counting; brackish water; fresh water; sea water; Article; autumn; bacterium colony; bacterium detection; biomass; environmental monitoring; Microcystis aeruginosa; nonhuman; priority journal; seasonal variation; spring; statistical model; winter
Año:2018
Volumen:151
Página de inicio:20
Página de fin:27
DOI: http://dx.doi.org/10.1016/j.mimet.2018.05.021
Título revista:Journal of Microbiological Methods
Título revista abreviado:J. Microbiol. Methods
ISSN:01677012
CODEN:JMIMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01677012_v151_n_p20_Alcantara

Referencias:

  • Agostinho, A.A., Pelicice, F.M., Petry, A.C., Gomes, L.C., Júlio, H.F., Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation (2007) Aquat. Ecosyst. Health Manag., 10, pp. 174-186
  • Armon, R.H., Starosvetsky, J., Armon, R.H., Hänninen, O., Algal bloom indicators (2015) Environmental Indicators, pp. 633-642. , Springer Netherlands Dordrecht
  • Bertani, I., Steger, C.E., Obenour, D.R., Fahnenstiel, G.L., Bridgeman, T.B., Johengen, T.H., Sayers, M.J., Scavia, D., Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? (2017) Sci. Total Environ., 575, pp. 294-308
  • Bonetto, A., Neiff, J., Di Persia, D., The Paraná river system (1986) The Ecology of River Systems, pp. 541-598. , Springer
  • Breiman, L., Random forests (2001) Mach. Learn., 45, pp. 5-32
  • Bridgeman, T.B., Chaffin, J.D., Filbrun, J.E., A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011 (2013) J. Great Lakes Res., 39, pp. 83-89
  • Bullerjahn, G.S., McKay, R.M., Davis, T.W., Baker, D.B., Boyer, G.L., D'Anglada, L.V., Doucette, G.J., Wilhelm, S.W., Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study (2016) Harmful Algae, 54, pp. 223-238
  • Calliari, D., Gómez, M., Gómez, N., Biomass and composition of the phytoplankton in the Río de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise (2005) Cont. Shelf Res., 25, pp. 197-210
  • Chalar, G., The use of phytoplankton patterns of diversity for algal bloom management (2009) Limnologica-Ecol. Manag. Inland Waters, 39, pp. 200-208
  • Chorus, I., Current Approaches to Cyanotoxin Risk Assessment, Risk Management and Regulations in Different Countries (2012), pp. 63-2012. , Federal Environmental Agency (Umweltbundesamt) Germany, Dessau; Chorus, I., Bartram, J., (1999) Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring, and Management, , (Eds.) E & FN Spon London New York
  • Dreiseitl, S., Ohno-Machado, L., Logistic regression and artificial neural network classification models: a methodology review (2002) J. Biomed. Inform., 35, pp. 352-359
  • Ferrari, G., del Carmen Perez, M., Dabezies, M., Miguez, D., Saizar, C., Planktic cyanobacteria in the lower Uruguay River, South America (2011) FOTTEA, 11, pp. 225-234
  • Gandola, E., Antonioli, M., Traficante, A., Franceschini, S., Scardi, M., Congestri, R., ACQUA: automated cyanobacterial quantification algorithm for toxic filamentous genera using spline curves, pattern recognition and machine learning (2016) J. Microbiol. Methods, 124, pp. 48-56
  • Grömping, U., Variable importance assessment in regression: linear regression versus random forest (2009) Am. Stat., 63, pp. 308-319
  • Guerrero, R.A., Acha, E.M., Lasta, C.A., Physical oceanography of the Río de la Plata estuary, Argentina (1997) Cont. Shelf Res., 17, pp. 727-742
  • Hastie, T., Tibshirani, R., Friedman, J., Overview of supervised learning (2009) The Elements of Statistical Learning, pp. 9-41. , Springer
  • Hawkins, P.R., Holliday, J., Kathuria, A., Bowling, L., Change in cyanobacterial biovolume due to preservation by Lugol's Iodine (2005) Harmful Algae, 4, pp. 1033-1043
  • Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., Zohary, T., Biovolume calculation for pelagic and benthic microalgae (1999) J. Phycol., 35, pp. 403-424
  • Jakobsen, H., Carstensen, J., FlowCAM: sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure (2011) Aquat. Microb. Ecol., 65, pp. 75-87
  • James, G., Witten, D., Hastie, T., Tibshirani, R., An introduction to statistical learning (2013) Springer Texts in Statistics, , Springer New York New York, NY
  • Joung, S., Kim, C., Ahn, C., Jang, K., Boo, S.M., Oh, H., Simple method for a cell count of the colonial cyanobacterium, Microcystis sp (2006) J. Microbiol.-Seoul, 44, p. 562
  • Komárek, J., Komárková, J., Review of the European microcystis-morphospecies (Cyanoprokaryotes) from nature (2002) Czech Phycol. Olomouc, 2, pp. 1-24
  • Kruk, C., Segura, A.M., Nogueira, L., Alcántara, I., Calliari, D., Martínez de la Escalera, G., Carballo, C., Piccini, C., A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean (2017) Harmful Algae, 70, pp. 23-36
  • Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, L.S., Torres-Perez, J., Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters (2015) Remote Sens. Environ., 167, pp. 196-205
  • Lehman, P.W., Boyer, G., Hall, C., Waller, S., Gehrts, K., Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California (2005) Hydrobiologia, 541, pp. 87-99
  • Lehman, P.W., Teh, S.J., Boyer, G.L., Nobriga, M.L., Bass, E., Hogle, C., Initial impacts of Microcystis aeruginosa blooms on the aquatic food web in the San Francisco Estuary (2010) Hydrobiologia, 637, pp. 229-248
  • Liaw, A., Wiener, M., Classification and Regression by randomForest (2002), 2, pp. 18-22. , R news; Lyakh, A., The Free Form Deformation of Phytoplankton Models (2002) Computational Science—ICCS 2002: International Conference Amsterdam, the Netherlands, April 21–24, 2002 Proceedings, Part III, pp. 194-201. , P.M.A. Sloot A.G. Hoekstra C.J.K. Tan J.J. Dongarra Springer Berlin Heidelberg Berlin, Heidelberg
  • Lyakh, A., A new method for accurate estimation of diatom biovolume and surface area (2007), pp. 113-116. , Botanic Garden and Botanical Museum Berlin-Dahlem; Martínez de la Escalera, G., Kruk, C., Segura, A.M., Nogueira, L., Alcántara, I., Piccini, C., Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient (2017) Harmful Algae, 62, pp. 73-83
  • Medeiros Fonseca, B., Ferragut, C., Tucci, A., Crossetti, L.O., Ferrari, F., de Campos Bicudo, D., Sant'Anna, C.L., de Mattos Bicudo, C.E., Biovolume De Cianobactérias E Algas De Reservatórios Tropicais Do Brasil Com Diferentes Estados Tróficos (2014), 41, pp. 9-30; Mituleţu, M., Drugă, B., Hegedus, A., Coman, C., Dragoş, N., Phylogenetic analysis of Microcystis strains (Cyanobacteria) based on the 16S-23S its and cpcBA-IGS markers (2013) Ann. RSCB, 18
  • Moberg, E.A., Sosik, H.M., Distance maps to estimate cell volume from two-dimensional plankton images: distance map cell volume algorithm (2012) Limnol. Oceanogr. Methods, 10, pp. 278-288
  • Moss, B., Kosten, S., Meerhoff, M., Battarbee, R.W., Jeppesen, E., Mazzeo, N., Havens, K., Scheffer, M., Allied attack: climate change and eutrophication (2011) Inland Waters, 1, pp. 101-105
  • Napiórkowska-Krzebietke, A., Kobos, J., Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies (2016) Water Res., 104, pp. 532-546
  • Olenina, I., Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea (2006); Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S., Watanabe, M.M., Characterization of morphospecies and strains of the genus Microcystis (Cyanobacteria) for a reconsideration of species classification (1999) Phycol. Res., 47, pp. 189-197
  • Otsuka, S., Suda, S., Li, R., Matsumoto, S., Watanabe, M.M., Morphological variability of colonies of Microcystis morphospecies in culture (2000) J. Gen. Appl. Microbiol., 46, pp. 39-50
  • Paerl, H.W., Huisman, J., Climate change: a catalyst for global expansion of harmful cyanobacterial blooms (2009) Environ. Microbiol. Rep., 1, pp. 27-37
  • Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., How to evaluate models: observed vs. predicted or predicted vs. observed? (2008) Ecol. Model., 216, pp. 316-322
  • Pobel, D., Robin, J., Humbert, J.-F., Influence of sampling strategies on the monitoring of cyanobacteria in shallow lakes: lessons from a case study in France (2011) Water Res., 45, pp. 1005-1014
  • R Core Team, R: A Language and Environment for Statistical Computing (2016), R Foundation for Statistical Computing Vienna, Austria; Reynolds, C.S., Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment (2007) Hydrobiologia, 578, pp. 37-45
  • Reynolds, C.S., Jaworski, G.H.M., Enumeration of natural Microcystis populations (1978) Br. Phycol. J., 13, pp. 269-277
  • Reynolds, C.S., Jaworski, G.H.M., Cmiech, H.A., Leedale, G.F., On the annual cycle of the blue-green alga Microcystis aeruginosa kutz. Emend. Elenkin (1981), 293, pp. 419-477. , Philosophical Transactions of the Royal Society of London. Series B, Biological Sciencies; Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., Melo, S., Towards a functional classification of the freshwater phytoplankton (2002) J. Plankton Res., 24, pp. 417-428
  • Rigonato, J., Sant'Anna, C.L., Giani, A., Azevedo, M.T.P., Gama, W.A., Viana, V.F.L., Fiore, M.F., Werner, V.R., Sphaerocavum: a coccoid morphogenus identical to microcystis in terms of 16S rDNA and ITS sequence phylogenies (2017) Hydrobiologia
  • Roselli, L., Paparella, F., Stanca, E., Basset, A., New data-driven method from 3D confocal microscopy for calculating phytoplankton cell: Calculating phytoplankton cell biovolume (2015) J. Microsc., 258, pp. 200-211
  • Rott, E., Salmaso, N., Hoehn, E., Quality control of Utermöhl-based phytoplankton counting and biovolume estimates—an easy task or a Gordian knot? (2007) Hydrobiologia, 578, pp. 141-146
  • Saccà, A., Methods for the estimation of the biovolume of microorganisms: a critical review: methods biovolume of microorganisms (2017) Limnol. Oceanogr. Methods, 15, pp. 337-348
  • Segura, A.M., Piccini, C., Nogueira, L., Alcántara, I., Calliari, D., Kruk, C., Increased sampled volume improves Microcystis aeruginosa complex (MAC) colonies detection and prediction using random forests (2017) Ecol. Indic., 79, pp. 347-354
  • Shen, H., Niu, Y., Xie, P., Tao, M., Yang, X., Morphological and physiological changes in microcystis aeruginosa as a result of interactions with heterotrophic bacteria: microcystis-heterotrophic bacterial community interactions (2011) Freshw. Biol., 56, pp. 1065-1080
  • Sukenik, A., Quesada, A., Salmaso, N., Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning (2015) Biodivers. Conserv., 24, pp. 889-908
  • Sun, J., Liu, D., Geometric models for calculating cell biovolume and surface area for phytoplankton (2003) J. Plankton Res., 25, pp. 1331-1346
  • Therneau, T., Atkinson, B., Ripley, B., rpart: Recursive Partitioning and Regression Trees No. R package version (2015), 4, pp. 1-10; Trainer, V., Hardy, F., Integrative monitoring of marine and freshwater harmful algae in Washington state for public health protection (2015) Toxins, 7, pp. 1206-1234
  • Vadrucci, M., Cabrini, M., Basset, A., Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion (2007) Transit. Waters Bull., 1, pp. 83-102
  • Vadrucci, M.R., Mazziotti, C., Fiocca, A., Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: methodological aspects (2013) Transit. Waters Bull., 7, pp. 100-123
  • van Gremberghe, I., Leliaert, F., Mergeay, J., Vanormelingen, P., Van der Gucht, K., Debeer, A.-E., Lacerot, G., Vyverman, W., Lack of Phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal (2011) PLoS One, 6
  • Vidal, L., Fabre, A., Gabito, L., Kruk, C., Gravier, A., Britos, A., del Carmen Péres, M., Bonilla, S., Fichas de identificación de las especies (2009) Cianobacterias Planctónicas Del Uruguay. Manual Para La Identificación Y Medidas de Gestión., Documento Tecnico PHI-LAC, , S. Bonilla UNESCO Uruguay
  • Wang, C., Wu, X., Tian, C., Li, Q., Tian, Y., Feng, B., Xiao, B., A quantitative protocol for rapid analysis of cell density and size distribution of pelagic and benthic Microcystis colonies by FlowCAM (2015) J. Appl. Phycol., 27, pp. 711-720
  • Wickham, H., ggplot2: Elegant Graphics for Data Analysis (2016), Springer New York; Wu, Z., Song, L., Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz.(Cyanobacteria) (2008) Phycologia, 47, pp. 98-104
  • Zhang, M., Kong, F., Tan, X., Yang, Z., Cao, H., Xing, P., Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation (2007) World J. Microbiol. Biotechnol., 23, pp. 663-670
  • Zhu, W., Li, M., Luo, Y., Dai, X., Guo, L., Xiao, M., Huang, J., Tan, X., Vertical distribution of Microcystis colony size in Lake Taihu: its role in algal blooms (2014) J. Great Lakes Res., 40, pp. 949-955

Citas:

---------- APA ----------
Alcántara, I., Piccini, C., Segura, A.M., Deus, S., González, C., Martínez de la Escalera, G. & Kruk, C. (2018) . Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach. Journal of Microbiological Methods, 151, 20-27.
http://dx.doi.org/10.1016/j.mimet.2018.05.021
---------- CHICAGO ----------
Alcántara, I., Piccini, C., Segura, A.M., Deus, S., González, C., Martínez de la Escalera, G., et al. "Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach" . Journal of Microbiological Methods 151 (2018) : 20-27.
http://dx.doi.org/10.1016/j.mimet.2018.05.021
---------- MLA ----------
Alcántara, I., Piccini, C., Segura, A.M., Deus, S., González, C., Martínez de la Escalera, G., et al. "Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach" . Journal of Microbiological Methods, vol. 151, 2018, pp. 20-27.
http://dx.doi.org/10.1016/j.mimet.2018.05.021
---------- VANCOUVER ----------
Alcántara, I., Piccini, C., Segura, A.M., Deus, S., González, C., Martínez de la Escalera, G., et al. Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach. J. Microbiol. Methods. 2018;151:20-27.
http://dx.doi.org/10.1016/j.mimet.2018.05.021