Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract: In this investigation we analyzed in detail the consequences of water deficit during the first 4 days of wheat development, focusing on root growth as affected by eventual changes in cell cycle regulation and oxidative processes. Root elongation decreased under water restriction in correlation with the intensity of this limitation, but the total number of cells between the quiescent center and the start of the rapid elongation zone in the root apex did not vary. Neither lipid peroxidation nor protein carbonylation increased in the roots of water-starved seedlings (ψw: −0.6 MPa); accordingly, catalase activity increased, and transcript levels of cat2 gene were enhanced. Superoxide dismutase activity rose at day 2 and 3 and, unlike catalase, displayed quite similar levels on comparing roots and coleoptiles. Proline and total soluble carbohydrates increased in the roots of water-starved seedling. Total conductivity and osmolality were also augmented. No changes in the transcript levels of the markers related to G1-S transition phase of cell cycle could be detected. However, two expansin genes (TaEXPB8 and TaEXPA5) were up-regulated in roots under water deficit. We conclude that wheat root elongation in water-deprived seedlings was simply hampered by lack of water income to cells. The enhanced expression of two root expansin genes is probably related to the eventual need of a quick cell wall expansion to allow the existing root cells to recover normal turgor, in case of sudden rewatering. Graphical Abstract: Maintenance of redox balance, osmotic adjustment and modification of cell wall plasticity may be key points for wheat seedlings to overcome a water restriction during early growth.[Figure not available: see fulltext.] © 2014, Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat
Autor:Barcia, R.A.; Pena, L.B.; Zawoznik, M.S.; Benavides, M.P.; Gallego, S.M.
Filiación:Departamento de Química Biológica, Universidad de Buenos Aires, Junín 956, 1º Piso, Buenos Aires, C1113AAC, Argentina
IQUIFIB, CONICET, Buenos Aires, Argentina
Palabras clave:Osmolyte accumulation; Oxidative stress; Root apical meristem; Root growth; Triticum aestivum; Water deficit; Triticum aestivum
Año:2014
Volumen:74
Número:2
Página de inicio:107
Página de fin:117
DOI: http://dx.doi.org/10.1007/s10725-014-9902-3
Título revista:Plant Growth Regulation
Título revista abreviado:Plant Growth Regul.
ISSN:01676903
CODEN:PGRED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01676903_v74_n2_p107_Barcia

Referencias:

  • Ashraf, M., Foolad, M.R., Roles of glycine betaine and proline in improving plant abiotic stress resistance (2007) Environ Exp Bot, 59, pp. 206-216. , COI: 1:CAS:528:DC%2BD28Xht1Cqtb%2FF
  • Bajji, M., Lutts, S., Kinet, J.M., Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in roots and leaves of durum wheat (Triticum durum Desf.) cultivars differing in drought resistance (2000) J Plant Physiol, 2000 (157), pp. 100-108
  • Banu, N.A., Hoque, A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., Murata, Y., Proline and glycine betaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress (2009) J Plant Physiol, 166, pp. 146-156. , PID: 18471929, COI: 1:CAS:528:DC%2BD1MXit1Kntbo%3D
  • Bartels, D., Sunkar, R., Drought and salt tolerance in plants (2005) Crit Rev Plant Sci, 24, pp. 23-58. , COI: 1:CAS:528:DC%2BD2MXis12ns7c%3D
  • Bartoli, C.G., Casalongué, C.A., Simontacchi, M., Marquez-Garcia, B., Foyer, C.H., Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress (2013) Environ Exp Bot, 94, pp. 73-88. , COI: 1:CAS:528:DC%2BC3sXht1aqsLvN
  • Bates, L.S., Waldren, R.P., Teare, L.D., Rapid determination of free proline for water stress studies (1973) Plant Soil, 39, pp. 205-207. , COI: 1:CAS:528:DyaE3sXlsVGitLk%3D
  • Becana, M., Aparico-Tejo, P., Irigoyen, J.J., Sánchez-Díaz, M., Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa (1986) Plant Physiol, 82, pp. 1169-1171. , PID: 16665158, COI: 1:CAS:528:DyaL2sXpvFChtQ%3D%3D
  • Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254. , PID: 942051, COI: 1:CAS:528:DyaE28XksVehtrY%3D
  • Chance, B., Sies, H., Boveris, A., Hydroperoxide metabolism in mammalian organs (1979) Physiol Rev, 59, pp. 527-605. , PID: 37532, COI: 1:CAS:528:DyaE1MXltVGmtLc%3D
  • Choi, D., Kim, J.H., Lee, Y., Expansins in plant development (2008) Adv Bot Res, 47, pp. 47-97. , COI: 1:CAS:528:DC%2BD1cXhtFyqtbzJ
  • Contento, A.L., Bassham, D.C., Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation (2010) Plant Physiol Biochem, 48, pp. 232-238. , PID: 20138775, COI: 1:CAS:528:DC%2BC3cXjs12lsLY%3D
  • Cosgrove, D.J., Loosening of plant cell walls by expansins (2000) Nature, 407, pp. 321-326. , PID: 11014181, COI: 1:CAS:528:DC%2BD3cXntFyktLs%3D
  • Couée, I., Sulmon, C., Gouesbet, G., El Amrani, A., Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants (2006) J Exp Bot, 57, pp. 449-459. , PID: 16397003
  • Davenport, S.B., Gallego, S.M., Benavides, M.P., Tomaro, M.L., Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells (2003) Plant Growth Regul, 40, pp. 81-88. , COI: 1:CAS:528:DC%2BD3sXis1CisL8%3D
  • Delmer, D.P., Agriculture in the developing world: connecting innovations in plant research to downstream applications (2005) Proc Nat Acad Sci USA, 102, pp. 15739-15746. , PID: 16263937, COI: 1:CAS:528:DC%2BD2MXht1Wru7jO
  • Erice, G., Louahlia, S., Irigoyen, J.J., Sanchez-Diaz, M., Avice, J.C., Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery (2010) J Plant Physiol, 167, pp. 114-120. , PID: 19744745, COI: 1:CAS:528:DC%2BC3cXisFymtrw%3D
  • Farrant, J.M., Mechanisms of desiccation tolerance in resurrection plants: a review from the molecular to whole plant physiological level (2010) S Afr J Bot, 76, p. 389
  • Flint, H.L., Boyce, B.R., Beattie, D.J., Index of injury-a useful expression of freezing injury to plant tissues as determined by the electrolytic method (1967) Can J Plant Sci, 47, pp. 229-230
  • Gallego, S.M., Kogan, M.J., Azpilicueta, C.E., Peña, C., Tomaro, M.L., Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annuus L.) cells in response to cadmium stress (2005) Plant Growth Regul, 46, pp. 267-276. , COI: 1:CAS:528:DC%2BD2MXhtVKit77J
  • Guan, Z.Q., Chai, T.Y., Zhang, Y.X., Xu, J., Wei, W., Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA (2009) Chemosphere, 76, pp. 623-630. , PID: 19473687, COI: 1:CAS:528:DC%2BD1MXnsFOisrs%3D
  • Hameed, A., Bibi, N., Akhter, J., Iqbal, N., Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions (2011) Plant Physiol Biochem, 49, pp. 178-185. , PID: 21159517, COI: 1:CAS:528:DC%2BC3MXhtVartbk%3D
  • Heath, R.L., Packer, L., Photo peroxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation (1968) Arch Biochem Biophys, 125, pp. 189-198. , PID: 5655425, COI: 1:CAS:528:DyaF1cXhtFWgtLw%3D
  • Hirano, H., Arracima, H., Shinmyo, A., Sekine, M., Arabidopsis retinoblastoma-related protein 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation (2008) Plant Mol Biol, 66, pp. 259-275. , PID: 18064404, COI: 1:CAS:528:DC%2BD2sXhsVKnsrzP
  • Iglesias, M.J., Terrile, M.C., Bartoli, C.G., D’Ippólito, S., Casalongué, C.A., Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis (2010) Plant Mol Biol, 74, pp. 215-222. , PID: 20661628, COI: 1:CAS:528:DC%2BC3cXhtFGhurbP
  • Inzé, D., Green light for the cell cycle (2005) EMBO J, 24, pp. 657-662. , PID: 15678103
  • Johansen, D.A., (1940) Plant microtechnique, , McGraw-Hill, New York:
  • Jubany-Marí, T., Munné-Bosch, S., Alegre, L., Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate (2010) Plant Physiol Biochem, 48, pp. 351-358. , PID: 20199867
  • Khanna-Chopra, R., Selote, D.S., Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions (2007) Environ Exp Bot, 60, pp. 276-283. , COI: 1:CAS:528:DC%2BD2sXislWgtLg%3D
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of head of bacteriophage T4 (1970) Nature, 227, pp. 680-685. , PID: 5432063, COI: 1:CAS:528:DC%2BD3MXlsFags7s%3D
  • Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A., Ahn, B., Stadtman, E.R., Determination of carbonyl content in oxidatively modified proteins (1990) Method Enzymol, 106, pp. 464-478
  • Li, F., Xing, S., Guo, Q., Zhao, M., Zhang, J., Gao, Q., Wang, G., Wang, W., Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco (2011) J Plant Physiol, 168, pp. 960-966. , PID: 21316798, COI: 1:CAS:528:DC%2BC3MXltFehtL8%3D
  • Lin, Z., Ni, Z., Zhang, Y., Yao, Y., Wu, H., Sun, Q., Isolation and characterization of 18 genes encoding α- and β-expansins in wheat (Triticum aestivum L.) (2005) Mol Genet Genomics, 274, pp. 548-556. , PID: 16270219, COI: 1:CAS:528:DC%2BD2MXht1Knt7rE
  • Liu, C.C., Liu, Y.G., Guo, K., Fan, D.Y., Li, G.G., Zheng, Y.R., Yu, L.F., Yang, R., Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China (2011) Environ Exp Bot, 71, pp. 174-183. , COI: 1:CAS:528:DC%2BC3MXhvFWitrs%3D
  • Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., Foyer, C.H., Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat (2005) J Exp Bot, 56, pp. 417-423. , PID: 15569704, COI: 1:CAS:528:DC%2BD2MXovVymtA%3D%3D
  • Marga, F., Grandbois, M., Cosgrove, D.J., Baskin, T.I., Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy (2005) Plant J, 43, pp. 181-190. , PID: 15998305, COI: 1:CAS:528:DC%2BD2MXntFequ7k%3D
  • Matysik, J., Alia, A., Bhalu, B., Mohanty, P., Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants (2002) Curr Sci, 82, pp. 525-532. , COI: 1:CAS:528:DC%2BD38XjtVert7g%3D
  • Michel, B.E., Kaufmann, M.R., The osmotic potential of polyethylene glycol 6000 (1973) Plant Physiol, 51, pp. 914-916. , PID: 16658439, COI: 1:CAS:528:DyaE3sXktVGkt7o%3D
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R., Reactive oxygen species homeostasis and signaling during drought and salinity stresses (2010) Plant, Cell Environ, 33, pp. 453-467. , COI: 1:CAS:528:DC%2BC3cXltV2hur8%3D
  • Mittler, R., Abiotic stress, the field environment and stress combination (2006) Trends Plant Sci, 7, pp. 405-410
  • Nakano, Y., Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast (1981) Plant Cell Physiol, 22, pp. 867-880. , COI: 1:CAS:528:DyaL3MXltFWqur0%3D
  • Neumann, P.M., Coping mechanisms for crop plants in drought-prone environments (2008) Ann Bot, 101, pp. 901-907. , PID: 18252764, COI: 1:CAS:528:DC%2BD1cXntVaiurg%3D
  • Parida, A.K., Das, A.B., Salt tolerance and salinity effects on plants: a review (2005) Ecotoxicol Environ Saf, 60, pp. 324-349. , PID: 15590011, COI: 1:CAS:528:DC%2BD2cXhtVKlt7nN
  • Pena, L.B., Azpilicueta, C.E., Gallego, S.M., Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation (2011) J Trace Elem Med Biol, 25, pp. 125-129. , PID: 21696931, COI: 1:CAS:528:DC%2BC3MXhtFGgur%2FP
  • Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Méndez, A.A.E., Gallego, S.M., Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings (2012) Plant Sci, 196, pp. 1-7. , PID: 23017894, COI: 1:CAS:528:DC%2BC38XhsVamtbnN
  • Pinheiro, C., Chaves, M.M., Photosynthesis and drought: can we make metabolic connections from available data? (2011) J Exp Bot, 62, pp. 869-882. , PID: 21172816, COI: 1:CAS:528:DC%2BC3MXhtVektLg%3D
  • Poorter, H., Garnier, E., Pugnaire, F., Valladares, F., Ecological significance of inherent variation in relative growth rate (2007) Functional plant ecology, pp. 67-87. , CRC Press, Florida, USA:
  • Schulze, E.D., Beck, E., Müller-Hohenstein, K., (2005) Autecology: whole plant ecology. In plant ecology, , Springer, Berlin:
  • Seki, M., Umezawa, T., Urano, K., Shinozaki, K., Regulatory metabolic networks in drought stress responses (2007) Curr Opin Plant Biol, 10, pp. 296-302. , PID: 17468040, COI: 1:CAS:528:DC%2BD2sXlt1Sit7s%3D
  • Sharma, S., Villamor, J.G., Verslues, P.E., Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential (2011) Plant Physiol, 157, pp. 292-304. , PID: 21791601, COI: 1:CAS:528:DC%2BC3MXht1Sit7zP
  • Shishkova, S., Rost, T.L., Dubrovsky, J.G., Determinate root growth and meristem maintenance in angiosperms (2008) Ann Bot, 101, pp. 319-340. , PID: 17954472, COI: 1:CAS:528:DC%2BD1cXjsl2jt7w%3D
  • Skirycz, A., Claeys, H., De Bodt, S., Oikawa, A., Shinoda, S., Andriankaja, M., Maleux, K., Inzé, D., Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest (2011) Plant Cell, 23, pp. 1876-1888. , PID: 21558544, COI: 1:CAS:528:DC%2BC3MXptFWqsLg%3D
  • Soltani, A., Gholipoor, M., Zeinali, E., Seed reserve utilization and seedling growth of wheat as affected by drought and salinity (2006) Environ Exp Bot, 55, pp. 195-200
  • Vendruscolo, E.C., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B., Marur, C.J., Vieira, L.G., Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat (2007) J Plant Physiol, 164, pp. 1367-1376. , PID: 17604875, COI: 1:CAS:528:DC%2BD2sXhtlWhs73L
  • Wu, Y., Thorne, E.T., Sharp, R.E., Cosgrove, D.J., Modification of expansin transcript levels in the maize primary root at low water potentials (2001) Plant Physiol, 126, pp. 1471-1479. , PID: 11500546, COI: 1:CAS:528:DC%2BD3MXlvFOjurk%3D
  • Yemm, E.W., Willis, A.J., The estimation of carbohydrates in plant extracts by anthrone (1954) Biochem J, 57, pp. 508-514. , PID: 13181867, COI: 1:CAS:528:DyaG2cXlvFOmtw%3D%3D
  • Zhang, L., Zhao, G., Xia, C., Jia, J., Liu, X., Kong, X., A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis (2012) J Exp Bot, 63, pp. 5873-5885. , PID: 23048128, COI: 1:CAS:528:DC%2BC38XhsFWrsrvM

Citas:

---------- APA ----------
Barcia, R.A., Pena, L.B., Zawoznik, M.S., Benavides, M.P. & Gallego, S.M. (2014) . Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat. Plant Growth Regulation, 74(2), 107-117.
http://dx.doi.org/10.1007/s10725-014-9902-3
---------- CHICAGO ----------
Barcia, R.A., Pena, L.B., Zawoznik, M.S., Benavides, M.P., Gallego, S.M. "Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat" . Plant Growth Regulation 74, no. 2 (2014) : 107-117.
http://dx.doi.org/10.1007/s10725-014-9902-3
---------- MLA ----------
Barcia, R.A., Pena, L.B., Zawoznik, M.S., Benavides, M.P., Gallego, S.M. "Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat" . Plant Growth Regulation, vol. 74, no. 2, 2014, pp. 107-117.
http://dx.doi.org/10.1007/s10725-014-9902-3
---------- VANCOUVER ----------
Barcia, R.A., Pena, L.B., Zawoznik, M.S., Benavides, M.P., Gallego, S.M. Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat. Plant Growth Regul. 2014;74(2):107-117.
http://dx.doi.org/10.1007/s10725-014-9902-3