Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

(-)Epinephrine (Epi) and (-)Norepinephrine (NEpi) significantly stimulated tritiated Thymidine incorporation in MCF-7 cells at concentrations 10-30 pM to 10 nM, with an EC50 of 10 pM for Epi and 14.2 pM for NEpi. To characterize this action, cells were incubated in the presence of NEpi or Epi and different antagonists. The β-adrenergic antagonist Propanolol showed no effect on the agonist's stimulation, whereas the α-adrenergic antagonist Phentolamine, reverted it completely at high concentrations (100 μM). The α1-adrenergic antagonist Prazosin (Pra) acted only at high concentrations, while the α2-adrenergic antagonist Yohimbine (Yo) reverted the stimulation at an EC50 of 0.11 μM. Likewise, when the cells were incubated in the presence of the specific α2-adrenergic agonist Clonidine (Clo), Thymidine incorporation was significantly stimulated at an EC50 of 0.298 pM. Again, the incubation of the cells in the presence of the α1-adrenergic antagonist Pra exerted its action at high concentrations, whereas the α2-adrenergic antagonist Yo showed a clear reversal of the agonist's enhancement at an EC50 of 0.136 μM. Moreover, Clo caused a clear and significant inhibition of stimulated cAMP levels both in the intracellular and the extracellular fractions. Yo showed a complete reversion of cAMP levels to control values in the presence of Clo, while Pra had the opposite effect. These data suggest that the stimulation provoked in Thymidine incorporation by the agonists Epi, NEpi, and Clo is, at least in part, due to an α2-adrenergic mechanism directly on tumoral cells, and that the effect is coupled with inhibition of cAMP levels, as described for this kind of receptors.

Registro:

Documento: Artículo
Título:α2-adrenergic effect on human breast cancer MCF-7 cells
Autor:Vázquez, S.M.; Pignataro, O.; Luthy, I.A.
Filiación:Inst. de Biol. y Med. Experimental, Buenos Aires, Argentina
Inst. de Biol. y Med. Experimental, Obligado 2490, (1428) Buenos Aires, Argentina
Palabras clave:α2-adrenergic agonists; α2-adrenergic antagonists; α2-adrenoceptor; Breast cancer; Catecholamines; Human; adrenalin; alpha 2 adrenergic receptor; cyclic AMP; noradrenalin; phentolamine; prazosin; propranolol; yohimbine; adrenalin; alpha adrenergic receptor blocking agent; alpha adrenergic receptor stimulating agent; beta adrenergic receptor blocking agent; clonidine; cyclic AMP; noradrenalin; phentolamine; prazosin; propranolol; yohimbine; article; breast cancer; cancer cell culture; cell stimulation; concentration response; controlled study; DNA synthesis; human; human cell; priority journal; breast tumor; cell culture; cell division; drug antagonism; drug effect; female; metabolism; pathology; physiology; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Breast Neoplasms; Cell Division; Cells, Cultured; Clonidine; Cyclic AMP; Epinephrine; Female; Humans; Norepinephrine; Phentolamine; Prazosin; Propranolol; Tumor Cells, Cultured; Yohimbine
Año:1999
Volumen:55
Número:1
Página de inicio:41
Página de fin:49
DOI: http://dx.doi.org/10.1023/A:1006196308001
Título revista:Breast Cancer Research and Treatment
Título revista abreviado:Breast Cancer Res. Treat.
ISSN:01676806
CODEN:BCTRD
CAS:adrenalin, 51-43-4, 55-31-2, 6912-68-1; cyclic AMP, 60-92-4; noradrenalin, 1407-84-7, 51-41-2; phentolamine, 50-60-2, 73-05-2; prazosin, 19216-56-9, 19237-84-4; propranolol, 13013-17-7, 318-98-9, 3506-09-0, 4199-09-1, 525-66-6; yohimbine, 146-48-5, 65-19-0; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Clonidine, 4205-90-7; Cyclic AMP, 60-92-4; Epinephrine, 51-43-4; Norepinephrine, 51-41-2; Phentolamine, 50-60-2; Prazosin, 19216-56-9; Propranolol, 525-66-6; Yohimbine, 146-48-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01676806_v55_n1_p41_Vazquez

Referencias:

  • Mor, V., Malin, M., Allen, S., Age differences in the psychosocial problems encountered by breast cancer patients (1994) J Natl Cancer Inst Monogr, 16, pp. 191-197
  • Hilakivi-Clarke, L., Rowland, J., Clarke, R., Lippman, M.E., Psychosocial factors in the development and progression of breast cancer (1993) Breast Cancer Res Treat, 29, pp. 141-160
  • Forsén, A., Psychosocial stress as a risk for breast cancer (1991) Psychother Psychosom, 55, pp. 176-185
  • Cooper, C.L., Faragher, E.B., Psychosocial stress and breast cancer: The inter-relationship between stress events, coping strategies and personality (1993) Psychol Med, 23, pp. 653-662
  • Tross, S., Herndon, J., Korzun, A., Kornblith, A.B., Cella, D.F., Holland, J.F., Raich, P., Holland, J.C., Psychological symptoms and disease-free and overall survival in women with stage II breast cancer (1996) JNCI, 88, pp. 661-667
  • Vogel, W.H., Coping, stress, stressors and health consequences (1985) Neuropsychobiology, 13, pp. 129-135
  • Rose, R.M., Psychoendocrinology (1985) Williams Textbook of Endocrinology, 7th Edition, pp. 653-681. , Wilson JD, Foster DW (eds). W.B. Saunders, Philadelphia
  • Vendewalle, B., Revillion, F., Lefebvre, J., Functional β-adrenergic receptors in breast cancer cells (1990) J Cancer Res Clin Oncol, 116, pp. 303-306
  • Marchetti, B., Spinola, P.G., Plante, M., Poyet, P., Follea, N., Pelletier, G., Labrie, F., Beta-adrenergic receptors in DMBA-induced rat mammary tumors: Correlation with progesterone receptor and tumor growth (1989) Breast Cancer Res Treat, 13, pp. 251-263
  • Hammon, H.M., Bruckmaier, R.M., Honegger, U.E., Blum, J.W., Distribution and density of α-and β-adrenergic receptor binding sites in the bovine mammary gland (1994) J Dairy Res, 61, pp. 47-57
  • Berthois, Y., Katzenellenbogen, J.A., Katzenellenbogen, B., Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture (1986) Proc Natl Acad Sci, 83, pp. 2496-2500
  • Del Punta, K., Charreau, E.H., Pignataro, O.P., Nitric oxide inhibits leydig cell steroidogenesis (1996) Endocrinology, 137, pp. 5337-5343
  • Birnbaumer, L., Techniques in cyclic nucleotide research Laboratory Methods Manual for Hormone Action and Molecular Endocrinology, 4th Edition, pp. 9-16. , Schrader WT, O'Malley BW (eds), Chap 9. Depart. Cell Biology, Baylor College of Medicine, Houston, TX
  • Dowdy, S., Wearden, S., (1983) Statistics for Research., pp. 243-286. , Wiley, New York
  • Black, P.H., Minireviews: Central nervous system - Immune system interactions: Psychoneuroendocrinology of stress and its immune consequences (1994) Antimicrob Agents Chemother, 38, pp. 1-6
  • Benschop, R.J., Nieuwenhuis, E.E.S., Tromp, E.A.M., Godaert, G.L.R., Ballieux, R.E., Van Doornen, L.J.P., Effects of β-adrenergic blockade on immunologic and cardiovascular changes induced by mental stress (1994) Circulation, 89, pp. 762-769
  • Lippman, M.E., Bolan, G., Huff, K., The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture (1976) Cancer Res, 36, pp. 4595-4601
  • MacDonald, E., Kobilka, B.K., Scheinin, M., Gene targeting-homing in on α2-adrenoceptor-subtype functions (1997) TIPS, 18, pp. 211-219
  • Aronica, S.M., Katzenellenbogen, B.S., Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I (1993) Mol Endocrinol, 7, pp. 743-752
  • Ruffolo, R.R., Nichols, A.J., Stadel, J.M., Hieble, J.P., Structure and function of α-adreno-ceptors (1991) Pharmacol Rev, 43, pp. 475-505
  • Fontana, J.A., Miksis, G., Miranda, D.M., Durham, J.P., Inhibition of human mammary carcinoma cell proliferation by retinoids and intracellular cAMP-elevating compounds (1987) JNCI, 78, pp. 1107-1112
  • Kapoor, C.L., Grantham, F., Cho-Chung, Y.S., Nucleolar accumulation of cyclic adenosine 3′: 5′-monophosphate receptor proteins during regression of MCF-7 human breast tumor (1984) Cancer Res, 44, pp. 3554-3560
  • Bøe, R., Gjertsen, B.T., Døskeland, S.O., Vintermyr, O.K., 8-chloro-cAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line (1995) Br J Cancer, 72, pp. 1151-1158
  • Alblas, J., Van Corven, E.J., Hordijk, P.L., Milligan, G., Moolenaar, W.H., Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by α2-adrenergic receptors expressed in fibroblasts (1993) J Biol Chem, 268, pp. 22235-22238
  • Blesen, T., Hawes, B.E., Luttrell, D.K., Krueger, K.M., Touhara, K., Porfiri, E., Sakaue, M., Lefkowitz, R.J., Receptor-tyrosine-kinase-and Gβγ-mediated MAP kinase activation by a common signaling pathway (1995) Nature, 376, pp. 781-784
  • Cacioppo, J.T., Social neuroscience: Autonomic neuroendocrine, and immune responses to stress (1994) Psychophysiology, 31, pp. 113-128

Citas:

---------- APA ----------
Vázquez, S.M., Pignataro, O. & Luthy, I.A. (1999) . α2-adrenergic effect on human breast cancer MCF-7 cells. Breast Cancer Research and Treatment, 55(1), 41-49.
http://dx.doi.org/10.1023/A:1006196308001
---------- CHICAGO ----------
Vázquez, S.M., Pignataro, O., Luthy, I.A. "α2-adrenergic effect on human breast cancer MCF-7 cells" . Breast Cancer Research and Treatment 55, no. 1 (1999) : 41-49.
http://dx.doi.org/10.1023/A:1006196308001
---------- MLA ----------
Vázquez, S.M., Pignataro, O., Luthy, I.A. "α2-adrenergic effect on human breast cancer MCF-7 cells" . Breast Cancer Research and Treatment, vol. 55, no. 1, 1999, pp. 41-49.
http://dx.doi.org/10.1023/A:1006196308001
---------- VANCOUVER ----------
Vázquez, S.M., Pignataro, O., Luthy, I.A. α2-adrenergic effect on human breast cancer MCF-7 cells. Breast Cancer Res. Treat. 1999;55(1):41-49.
http://dx.doi.org/10.1023/A:1006196308001