Artículo

Navarro Diaz, G.P.; Saulo, A.C.; Otero, A.D."Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc" (2019) Journal of Wind Engineering and Industrial Aerodynamics. 186:58-67
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Wind turbine wake interference is a relevant phenomenon that involves speed losses and turbulence increments which greatly affect downstream turbines, and power efficiency of wind farms. To precisely simulate wake interaction, the most common simplified wind turbine model, the Actuator Disc (AD) model, is improved adding the capability to adapt the thrust force distribution to a non-uniform velocity field over the disc, and the orientation to different local wind directions. These situations are typically found in wind farm situation where turbines interact with wakes of upstream turbines and the terrain. This development is based on the OpenFOAM open source finite volume parallel software. The improved AD model is first validated against wind tunnel experiments. Then, an onshore wind farm case is presented, in which the complex interaction of the turbines and terrain is studied. Comparing with power efficiency of field measurements, the simulations succeed to capture the characteristic values for low and high wake impact situations, with differences of 2.5% and 1.3%, respectively. Results show that this improved AD model produces a better solution for wake interaction cases. Its usefulness to predict the wind farm power output at feasible computational cost is also evidenced. © 2018

Registro:

Documento: Artículo
Título:Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc
Autor:Navarro Diaz, G.P.; Saulo, A.C.; Otero, A.D.
Filiación:Universidad de Buenos Aires, Facultad de Exactas y Ciencias Naturales, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Centro de Simulación Computacional para Aplicaciones Tecnológicas, CONICET, Godoy Cruz 2390, Buenos Aires, C1425FQD, Argentina
Servicio Meteorológico Nacional, Dorrego 4019Ciudad Autónoma de Buenos Aires C1425GBE, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, C1063ACV, Argentina
Palabras clave:Actuator disc model; Computational fluid dynamics; Wake interference; Wind farm power efficiency; Wind turbine; Actuator disks; Computational fluid dynamics; Efficiency; Electric power system interconnection; Electric utilities; Landforms; Open source software; Open systems; Velocity; Wakes; Wind tunnels; Wind turbines; Actuator disc; Characteristic value; Interaction simulations; Non-uniform velocities; Power efficiency; Wake interferences; Wind tunnel experiment; Wind turbine modeling; Onshore wind farms
Año:2019
Volumen:186
Página de inicio:58
Página de fin:67
DOI: http://dx.doi.org/10.1016/j.jweia.2018.12.018
Handle:http://hdl.handle.net/20.500.12110/paper_01676105_v186_n_p58_NavarroDiaz
Título revista:Journal of Wind Engineering and Industrial Aerodynamics
Título revista abreviado:J. Wind Eng. Ind. Aerodyn.
ISSN:01676105
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01676105_v186_n_p58_NavarroDiaz

Referencias:

  • Avila, M., Gargallo-Peiró, A., Folch, A., A CFD framework for offshore and onshore wind farm simulation (2017) Journal of Physics: Conference Series, 854, p. 012002. , IOP Publishing
  • Burton, T., Wind Energy Handbook (2001), Wiley; Castellani, F., Vignaroli, A., An application of the actuator disc model for wind turbine wakes calculations (2013) Appl. Energy, 101, pp. 432-440
  • Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., Kühn, M., The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms (2015) J. Wind Eng. Ind. Aerod., 144, pp. 146-153
  • El Kasmi, A., Masson, C., An extended k–ε model for turbulent flow through horizontal-axis wind turbines (2008) J. Wind Eng. Ind. Aerod., 96 (1), pp. 103-122
  • El-Askary, W., Sakr, I., AbdelSalam, A.M., Abuhegazy, M., Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer (2017) J. Wind Eng. Ind. Aerod., 160, pp. 1-15
  • Glauert, H., Airplane propellers (1935) Aerodynamic Theory, pp. 169-360. , Springer
  • Javaheri, A., Cañadillas, B., Wake modelling of an offshore wind farm using OpenFOAM (2013) DEWI magazine, p. 118
  • Keck, R.E., A numerical investigation of nacelle anemometry for a HAWT using actuator disc and line models in CFX (2012) Renew. Energy, 48, pp. 72-84
  • Krogstad, P.Å., Eriksen, P.E., “Blind test” calculations of the performance and wake development for a model wind turbine (2013) Renew. Energy, 50, pp. 325-333
  • Krogstad, P.Å., Sætran, L., Adaramola, M.S., “Blind Test 3” calculations of the performance and wake development behind two in-line and offset model wind turbines (2015) J. Fluid Struct., 52, pp. 65-80
  • Launder, B.E., Spalding, D.B., The numerical computation of turbulent flows (1974) Comput. Methods Appl. Mech. Eng., 3 (2), pp. 269-289
  • Makridis, A., Chick, J., Validation of a CFD model of wind turbine wakes with terrain effects (2013) J. Wind Eng. Ind. Aerod., 123, pp. 12-29
  • Murali, A., Rajagopalan, R., Numerical simulation of multiple interacting wind turbines on a complex terrain (2017) J. Wind Eng. Ind. Aerod., 162, pp. 57-72
  • Naderi, S., Parvanehmasiha, S., Torabi, F., Modeling of horizontal axis wind turbine wakes in Horns Rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic (2018) Energy Convers. Manag., 171, pp. 953-968
  • Nygaard, N.G., Wakes in very large wind farms and the effect of neighbouring wind farms (2014) Journal of Physics: Conference Series, 524, p. 012162. , IOP Publishing
  • (2017), http:/www.openfoam.org/, OpenFOAM URL; Panofsky, H.A., Dutton, J., Atmospheric Turbulence: Models and Methods for Engineering Applications (1984), p. 397. , John Wiley New York; Pierella, F., Krogstad, P.Å., Sætran, L., Blind Test 2” calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds (2014) Renew. Energy, 70, pp. 62-77
  • Politis, E.S., Prospathopoulos, J., Cabezon, D., Hansen, K.S., Chaviaropoulos, P., Barthelmie, R.J., Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues (2012) Wind Energy, 15 (1), pp. 161-182
  • Porté-Agel, F., Wu, Y.T., Lu, H., Conzemius, R.J., Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms (2011) J. Wind Eng. Ind. Aerod., 99 (4), pp. 154-168
  • Porté-Agel, F., Wu, Y.T., Chen, C.H., A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm (2013) Energies, 6 (10), pp. 5297-5313
  • Réthoré, P.E., van der Laan, P., Troldborg, N., Zahle, F., Sørensen, N.N., Verification and validation of an actuator disc model (2014) Wind Energy, 17 (6), pp. 919-937
  • Sanderse, B., Pijl, S., Koren, B., Review of computational fluid dynamics for wind turbine wake aerodynamics (2011) Wind Energy, 14 (7), pp. 799-819
  • Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., A new k - ε eddy viscosity model for high Reynolds number turbulent flows (1995) Comput. Fluids, 24 (3), pp. 227-238
  • Troldborg, N., Meyer Forsting, A.R., A simple model of the wind turbine induction zone derived from numerical simulations (2017) Wind Energy, 20 (12), pp. 2011-2020
  • Tzimas, M., Prospathopoulos, J., Wind turbine rotor simulation using the actuator disk and actuator line methods (2016) Journal of Physics: Conference Series, 753, p. 032056. , IOP Publishing
  • van der Laan, M.P., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., An improved k- ε model applied to a wind turbine wake in atmospheric turbulence (2015) Wind Energy, 18 (5), pp. 889-907
  • van der Laan, M.P., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., The k-ε-fp model applied to wind farms (2015) Wind Energy, 18 (12), pp. 2065-2084
  • van der Laan, M.P., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., The k-ε-fp model applied to double wind turbine wakes using different actuator disk force methods (2015) Wind Energy, 18 (12), pp. 2223-2240
  • van der Laan, P.M., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., The k-ε-fp model applied to wind farms (2015) Wind Energy, 18 (12)
  • van Kuik, G., Sørensen, J., Okulov, V., Rotor theories by professor joukowsky: momentum theories (2015) Prog. Aero. Sci., 73, pp. 1-18
  • Vinazza, D., Otero, A., Soba, A., Mocskos, E., Initial experiences from tupac supercomputer (2017) Latin American High Performance Computing Conference, pp. 38-52. , Springer
  • Wu, Y.T., Porté-Agel, F., Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations (2011) Boundary-Layer Meteorol., 138 (3), pp. 345-366

Citas:

---------- APA ----------
Navarro Diaz, G.P., Saulo, A.C. & Otero, A.D. (2019) . Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc. Journal of Wind Engineering and Industrial Aerodynamics, 186, 58-67.
http://dx.doi.org/10.1016/j.jweia.2018.12.018
---------- CHICAGO ----------
Navarro Diaz, G.P., Saulo, A.C., Otero, A.D. "Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc" . Journal of Wind Engineering and Industrial Aerodynamics 186 (2019) : 58-67.
http://dx.doi.org/10.1016/j.jweia.2018.12.018
---------- MLA ----------
Navarro Diaz, G.P., Saulo, A.C., Otero, A.D. "Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc" . Journal of Wind Engineering and Industrial Aerodynamics, vol. 186, 2019, pp. 58-67.
http://dx.doi.org/10.1016/j.jweia.2018.12.018
---------- VANCOUVER ----------
Navarro Diaz, G.P., Saulo, A.C., Otero, A.D. Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc. J. Wind Eng. Ind. Aerodyn. 2019;186:58-67.
http://dx.doi.org/10.1016/j.jweia.2018.12.018