Artículo

Leal Denis, M.F.; Lefevre, S.D.; Alvarez, C.L.; Lauri, N.; Enrique, N.; Rinaldi, D.E.; Gonzalez-Lebrero, R.; Vecchio, L.E.; Espelt, M.V.; Stringa, P.; Muñoz-Garay, C.; Milesi, V.; Ostuni, M.A.; Herlax, V.; Schwarzbaum, P.J."Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis" (2019) Biochimica et Biophysica Acta - Molecular Cell Research. 1866(5):896-915
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Alpha-hemolysin (HlyA) of uropathogenic strains of Escherichia coli irreversibly binds to human erythrocytes (RBCs) and triggers activation of ATP release and metabolic changes ultimately leading to hemolysis. We studied the regulation of extracellular ATP (ATPe) of RBCs exposed to HlyA. Luminometry was used to assess ATP release and ATPe hydrolysis, whereas changes in cell volume and morphology were determined by electrical impedance, ektacytometry and aggregometry. Exposure of RBCs to HlyA induced a strong increase of [ATPe] (3–36-fold) and hemolysis (1–44-fold), partially compensated by [ATPe] hydrolysis by ectoATPases and intracellular ATPases released by dead cells. Carbenoxolone, a pannexin 1 inhibitor, partially inhibited ATP release (43–67%). The un-acylated toxin ProHlyA and the deletion analog HlyA∆914-936 were unable to induce ATP release or hemolysis. For HlyA treated RBCs, a data driven mathematical model showed that simultaneous lytic and non-lytic release mainly governed ATPe kinetics, while ATPe hydrolysis became important after prolonged toxin exposure. HlyA induced a 1.5-fold swelling, while blocking this swelling reduced ATP release by 77%. Blocking ATPe activation of purinergic P2X receptors reduced swelling by 60–80%. HlyA-RBCs showed an acute 1.3–2.2-fold increase of Ca 2+ i, increased crenation and externalization of phosphatidylserine. Perfusion of HlyA-RBCs through adhesion platforms showed strong adhesion to activated HMEC cells, followed by rapid detachment. HlyA exposed RBCs exhibited increased sphericity under osmotic stress, reduced elongation under shear stress, and very low aggregation in viscous media. Overall results showed that HlyA-RBCs displayed activated ATP release, high but weak adhesivity, low deformability and aggregability and high sphericity. © 2019 Elsevier B.V.

Registro:

Documento: Artículo
Título:Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis
Autor:Leal Denis, M.F.; Lefevre, S.D.; Alvarez, C.L.; Lauri, N.; Enrique, N.; Rinaldi, D.E.; Gonzalez-Lebrero, R.; Vecchio, L.E.; Espelt, M.V.; Stringa, P.; Muñoz-Garay, C.; Milesi, V.; Ostuni, M.A.; Herlax, V.; Schwarzbaum, P.J.
Filiación:Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) “Prof. Alejandro C. Paladini”, Facultad de Farmacia y Bioquímica, Buenos Aires, Junín 956, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica, Cátedra de Química Química Analítica y Fisicoquímica, Buenos Aires, Junín 956, Argentina
UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, Paris, F-75015, France
Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, F-75015, France
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Intendente Güiraldes 2160, Argentina
Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Buenos Aires, Junín 956, Argentina
Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, La Plata, Calle 47 y 115, Argentina
Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Junín 956, Argentina
Universidad Favaloro, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Av. Entre Ríos 495, Buenos Aires, Argentina
Universidad Nacional de La Plata, Laboratorio de Trasplante de Órganos y Tejidos, Facultad de Ciencias, Calle 60 y 120, La Plata, Argentina
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Cuernavaca, Mexico
Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) “Prof. Dr. Rodolfo R. Brenner”, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
Palabras clave:Adhesion, aggregation; ATP-transport; E.coli; hemolysin; Hemolysis; adenosine triphosphatase; alpha hemolysin; apyrase; calcium; carbenoxolone; hemoglobin; liposome; purinergic P2X receptor; animal experiment; Article; calcium cell level; cell aggregation; cell isolation; cell shape; cell structure; cell swelling; cell volume; erythrocyte; flow kinetics; hemolysis; hemolysis assay; human; human cell; hydrolysis; impedance; male; mathematical model; membrane potential; mesenteric arterial bed; nonhuman; osmotic stress; priority journal; protein purification; protein secretion; rat; refraction index; regulatory mechanism; scanning electron microscopy; shear stress
Año:2019
Volumen:1866
Número:5
Página de inicio:896
Página de fin:915
DOI: http://dx.doi.org/10.1016/j.bbamcr.2019.01.018
Handle:http://hdl.handle.net/20.500.12110/paper_01674889_v1866_n5_p896_LealDenis
Título revista:Biochimica et Biophysica Acta - Molecular Cell Research
Título revista abreviado:Biochim. Biophys. Acta Mol. Cell Res.
ISSN:01674889
CODEN:BAMRD
CAS:adenosine triphosphatase, 37289-25-1, 9000-83-3; apyrase, 9000-95-7; calcium, 7440-70-2, 14092-94-5; carbenoxolone, 5697-56-3, 7421-40-1; hemoglobin, 9008-02-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01674889_v1866_n5_p896_LealDenis

Referencias:

  • Ellsworth, M.L., Ellis, C.G., Sprague, R.S., Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle (2016) Acta Physiol., 216 (3), pp. 265-276
  • Wan, J., Ristenpart, W.D., Stone, H.A., Dynamics of shear-induced ATP release from red blood cells (2008) Proc. Natl. Acad. Sci., 105 (43), pp. 16432-16437. , Available from:
  • González-Alonso, J., Olsen, D.B., Saltin, B., Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP (2002) Circ. Res., 91 (11), pp. 1046-1055. , http://www.ncbi.nlm.nih.gov/pubmed/12456491, Available from
  • Sprague, R.S., Bowles, E.A., Achilleus, D., Ellsworth, M.L., Erythrocytes as controllers of perfusion distribution in the microvasculature of skeletal muscle (2011) Acta Physiol (Oxford), 202 (3), pp. 285-292. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3021763&tool=pmcentrez&rendertype=abstract, Available from:
  • Ellsworth, M.L., Sprague, R.S., Regulation of blood flow distribution in skeletal muscle: role of erythrocyte-released ATP (2012) J. Physiol., 590, pp. 4985-4991. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3497557&tool=pmcentrez&rendertype=abstract, Available from:
  • Hellsten, Y., Nyberg, M., Mortensen, S.P., Contribution of intravascular versus interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans (2012) J. Physiol., 590, pp. 5015-5023. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3497560&tool=pmcentrez&rendertype=abstract, Available from:
  • Sprague, R.S., Ellsworth, M.L., Stephenson, A.H., Kleinhenz, M.E., Lonigro, A.J., Deformation-induced ATP release from red blood cells requires CFTR activity (1998) Am. J. Phys., 275 (5)
  • Sprague, R.S., Stephenson, A.H., Bowles, E.A., Stumpf, M.S., Lonigro, A.J., Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release (2006) Diabetes, 55 (12), pp. 3588-3593. , http://www.ncbi.nlm.nih.gov/pubmed/17130508, Available from
  • Sprague, R.S., Bowles, E.A., Achilleus, D., Stephenson, A.H., Ellis, C.G., Ellsworth, M.L., A selective phosphodiesterase 3 inhibitor rescues low PO 2 -induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control (2011) Am. J. Physiol. Heart Circ. Physiol., 301 (6). , http://ajpheart.physiology.org/content/301/6/H2466.short, Available from:
  • Skals, M., Bjaelde, R.G., Reinholdt, J., Poulsen, K., Vad, B.S., Otzen, D.E., Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore (2014) J. Biol. Chem., 289 (27), pp. 19098-19109. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4081947&tool=pmcentrez&rendertype=abstract, Available from:
  • Alvarez, C.L., Schachter, J., De Sá Pinheiro, A.A., De Souza, S.L., Verstraeten, S., Persechini, P.M., Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum (2014) PLoS One, 9 (5). , Available from:
  • Sikora, J., Orlov, S.N., Furuya, K., Grygorczyk, R., Hemolysis is a primary ATP-release mechanism in human erythrocytes (2014) Blood, 124 (13), pp. 2150-2157
  • Lazarowski, E.R., Vesicular and conductive mechanisms of nucleotide release (2012) Purinergic Signal, 8 (3), pp. 359-373
  • Islam, M.R., Uramoto, H., Okada, T., Sabirov, R.Z., Okada, Y., Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells (2012) Am. J. Phys. Cell Phys., 303 (9). , http://www.ncbi.nlm.nih.gov/pubmed/22785119, Available from
  • Marginedas-Freixa, I., Alvarez, C.L., Moras, M., Leal Denis, M.F., Hattab, C., Halle, F., Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1 (2018) Sci. Rep., 8 (1), pp. 1-13. , https://www.nature.com/articles/s41598-018-29885-7, Available from:
  • Marginedas-Freixa, I., Alvarez, C., Moras, M., Hattab, C., Bouyer, G., Chene, A., Induction of ATP Release, PPIX transport, and cholesterol uptake by human red blood cells using a new family of TSPO ligands (2018) Int. J. Mol. Sci., 19 (10), p. 3098. , http://www.mdpi.com/1422-0067/19/10/3098, Available from:
  • Di Virgilio, F., Schmalzing, G., Markwardt, F., The elusive P2X7 macropore (2018) Trends Cell Biol., 28 (5), pp. 392-404. , Available from:
  • Wang, J., Dahl, G., Pannexin1: a multi-function and multi-conductance/-permeability membrane channel (2018) Am. J. Phys., , ajpcell.00302.2017. Available from:
  • Skals, M., Jorgensen, N.R., Leipziger, J., Praetorius, H.A., Hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis (2009) Proc. Natl. Acad. Sci., 106 (10), pp. 4030-4035. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2656199&tool=pmcentrez&rendertype=abstract, Available from:
  • Velásquez Carrizo, F., Maté, S., Bakás, L., Herlax, V., Induction of eryptosis by low concentrations of E. coli alpha-hemolysin (2015) Biochim. Biophys. Acta Biomembr., 1848 (11), pp. 2779-2788. , Available from:
  • Hughes, C., Hacker, J., Roberts, A., Goebel, W., Hemolysin production as a virulence marker in symptomatic and asymptomatic urinary-tract infections caused by Escherichia coli (1983) Infect. Immun., 39 (2), pp. 546-551
  • Marrs, C.F., Zhang, L., Foxman, B., Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? (2005) FEMS Microbiol. Lett., 252 (2), pp. 183-190
  • Herlax, V., Bakás, L., Acyl chains are responsible for the irreversibility in the Escherichia coli α-hemolysin binding to membranes (2003) Chem. Phys. Lipids, 122 (1-2), pp. 185-190. , http://www.sciencedirect.com/science/article/pii/S0009308402001913, Available from:
  • Benz, R., Maier, E., Bauer, S., Ludwig, A., The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands (2014) PLoS One, 9 (12), pp. 1-26
  • Wang, Y., Wang, S., Increased extracellular ATP: an omen of bacterial RTX toxin-induced hemolysis? (2014) Toxins, 6 (8), pp. 2432-2434
  • Cortajarena, A.L., Goñi, F.M., Ostolaza, H., A receptor-binding region in Escherichia coli α-haemolysin (2003) J. Biol. Chem., 278 (21), pp. 19159-19163
  • Carroll, J., Raththagala, M., Subasinghe, W., Baguzis, S., D'Amico Oblak, T., Root, P., An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP (2006) Mol. BioSyst., 2 (6), pp. 305-311
  • Koziak, K., Sévigny, J., Robson, S., Siegel, J., Kaczmarek, E., Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes (1999) Thromb. Haemost., 82 (11), pp. 1538-1544. , Available from:
  • Wang, L., Olivecrona, G., Götberg, M., Olsson, M.L., Winzell, M.S., Erlinge, D., ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells (2005) Circ. Res., 96 (2), pp. 189-196
  • Pafundo, D.E., Alvarez, C.L., Krumschnabel, G., Schwarzbaum, P.J., A volume regulatory response can be triggered by nucleosides in human erythrocytes, a perfect osmometer no longer (2010) J. Biol. Chem., 285 (9), pp. 6134-6144. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2825408&tool=pmcentrez&rendertype=abstract, Available from:
  • Erlinge, D., Burnstock, G., P2 receptors in cardiovascular regulation and disease (2008) Purinergic Signal, 4 (1), pp. 1-20. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2245998&tool=pmcentrez&rendertype=abstract, Available from:
  • Leal Denis, M.F., Incicco, J.J., Espelt, M.V., Verstraeten, S.V., Pignataro, O.P., Lazarowski, E.R., Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes (2013) Biochim. Biophys. Acta, Gen. Subj., 1830 (10), pp. 4692-4707. , Available from:
  • Leal Denis, M.F., Alvarez, H.A., Lauri, N., Alvarez, C.L., Chara, O., Schwarzbaum, P.J., Dynamic regulation of cell volume and extracellular ATP of human erythrocytes (2016) PLoS One, 11 (6)
  • Moayeri, M., Welch, R.A., Prelytic and lytic conformations of erythrocyte-associated Escherichia coli hemolysin (1997) Infect. Immun., 65 (6), pp. 2233-2239. , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC175308/pdf/652233.pdf, Available from:
  • Boehm, D.F., Welch, R.A., Snyder, I.S., Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes (1990) Infect. Immun., pp. 1959-1964. , http://iai.asm.org/content/58/6/1959.full.pdf, Available from:
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72 (1-2), pp. 248-254. , https://www.sciencedirect.com/science/article/pii/0003269776905273?via%3Dihub, Available from:
  • Strehler, B.L., Bioluminescence assay: principles and practice (1968) Methods Biochem. Anal., 16, pp. 99-181. , http://www.ncbi.nlm.nih.gov/pubmed/4385967, Available from:
  • Brown, A.M., ATP and ATPase determination in red blood cells (1982) Red Cell Membranes — A Methodological Approach, pp. 223-238. , J.C. Ellory J. Young Accademic Press London
  • Gorman, M.W., Marble, D.R., Ogimoto, K., Feigl, E.O., Measurement of adenine nucleotides in plasma (2003) Luminescence, 18 (3), pp. 173-181. , http://www.ncbi.nlm.nih.gov/pubmed/12701093, Available from:
  • Olearczyk, J.J., Stephenson, A.H., Lonigro, A.J., Sprague, R.S., Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes (2004) Am. J. Physiol. Heart Circ. Physiol., 286 (3). , http://www.ncbi.nlm.nih.gov/pubmed/14615280, Available from
  • Sridharan, M., Bowles, E.A., Richards, J.P., Krantic, M., Davis, K.L., Dietrich, K.A., Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel (2012) Am. J. Physiol. Heart Circ. Physiol., 302 (3). , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3353798&tool=pmcentrez&rendertype=abstract, Available from:
  • Montalbetti, N., Leal Denis, M.F., Pignataros, O.P., Kobatake, E., Lazarowski, E.R., Schwarzbaum, P.J., Homeostasis of extracellular ATP in human erythrocytes (2011) J. Biol. Chem., 286 (44), pp. 38397-38407
  • Fischer, S.L., Fischer, S.P., Mean corpuscular volume (1983) Arch. Intern. Med., 143 (2), p. 282. , http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.1983.00350020108020, Available from:
  • Baskurt, O.K., Boynard, M., Cokelet, G.C., Connes, P., Cooke, B.M., Forconi, S., New guidelines for hemorheological laboratory techniques (2009) Clin. Hemorheol. Microcirc., 42 (2), pp. 75-97. , http://www.ncbi.nlm.nih.gov/pubmed/19433882, Available from
  • Nemeth, N., Kiss, F., Miszti-Blasius, K., Interpretation of osmotic gradient ektacytometry (osmoscan) data: a comparative study for methodological standards (2015) Scand. J. Clin. Lab. Invest., 75 (3), pp. 213-222
  • Yamada, A., Gaja, N., Ohya, S., Muraki, K., Narita, H., Ohwada, T., Usefulness and limitation of DiBAC 4 (3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca 2+ -activated K + channels in HEK293 cells (2001) Jpn. J. Pharmacol., 86, pp. 342-350. , https://www.jstage.jst.go.jp/article/jjp/86/3/86_3_342/_pdf/-char/en, Available from:
  • Céliz, G., Alfaro, F.F., Cappellini, C., Daz, M., Verstraeten, S.V., Prunin- and hesperetin glucoside-alkyl (C4–C18) esters interaction with Jurkat cells plasma membrane: consequences on membrane physical properties and antioxidant capacity (2013) Food Chem. Toxicol., 55, pp. 411-423. , https://www.sciencedirect.com/science/article/pii/S0278691513000331?via%3Dihub, Available from:
  • Stringa, P., Romanin, D., Lausada, N., http://www.ncbi.nlm.nih.gov/pubmed/29184909, Papa Gobbi R, Zanuzzi C, Martín P, et al. Gut permeability and glucose absorption are affected at early stages of graft rejection in a small bowel transplant rat model. Transplant. Direct; 3(11): e220. Available from:; Soloaga, A., Ostolaza, H., Goni, F.M., De La Cruz, F., Purification of E. coli pro-haemolysin and a comparison with the properties of mature a-haemolysin (1996) Eur. J. Biochem., 422 (238), pp. 418-422
  • Vázquez, R.F., Maté, S.M., Bakás, L.S., Muñoz-Garay, C., Herlax, V.S., Relationship between intracellular calcium and morphologic changes in rabbit erythrocytes: effects of the acylated and unacylated forms of E. coli alpha-hemolysin (2016) Biochim. Biophys. Acta Biomembr., 1858 (8), pp. 1944-1953. , Available from:
  • Maté, S., Busto, J.V., García-Arribas, A.B., Sot, J.S., Vazquez, R., Herlax, V., N-Nervonoylsphingomyelin (C24:1) Prevents Lateral Heterogeneity in Cholesterol-containing Membranes (2014), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070274/pdf/main.pdf, Available from:; Leal Denis, M.F., Incicco, J.J., Espelt, M.V., Verstraeten, S.V., Pignataro, O.P., Lazarowski, E.R., Corrigendum to “Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes” [Biochim. Biophys. Acta — Gen. Subj. 1830 (10) (2013) 4692–4707] (2014) Biochim. Biophys. Acta, Gen. Subj., 1840 (6), p. 1837. , http://linkinghub.elsevier.com/retrieve/pii/S0304416514000403, Available from:
  • Corriden, R., Insel, P.A., Basal release of ATP: an autocrine-paracrine mechanism for cell regulation (2010) Sci. Signal., 3 (104)
  • Sluyter, R., Shemon, A.N., Barden, J.A., Wiley, J.S., Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X 7 receptor (2004) J. Biol. Chem., 279 (43), pp. 44749-44755
  • Burnstock, G., Blood cells: an historical account of the roles of purinergic signalling (2015) Purinergic Signal, 11 (4), pp. 411-434
  • Huber, S.M., Uhlemann, A.-C., Gamper, N.L., Duranton, C., Kremsner, P.G., Lang, F., Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation (2002) EMBO J., 21 (1-2), pp. 22-30. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=125814&tool=pmcentrez&rendertype=abstract, Available from:
  • Stringa, P.L., Romanin, D., Lausada, N., Papa Gobbi, R., Zanuzzi, C., Martín, P., Gut permeability and glucose absorption are affected at early stages of graft rejection in a small bowel transplant rat model (2017) Transplant. Direct, 3 (11). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682765/pdf/txd-3-e220.pdf, Available from:
  • Lillie, R., Histopathologic Technic and Practical Histochemistry (1947), http://krishikosh.egranth.ac.in/bitstream/1/23040/1/IVRIOB 1826.pdf, [cited 2018 Jun 8]; Available from:; Baker, R.F., Clark, L.J., Assay of red cell membrane deformability with some applications (1983) Biomed. Biochim. Acta, 42 (11−12), pp. S91-S96. , http://www.ncbi.nlm.nih.gov/pubmed/6675722, Available from
  • Skals, M., Jensen, U.B., Ousingsawat, J., Kunzelmann, K., Leipziger, J., Praetorius, H.A., Escherichia coli alpha-hemolysin triggers shrinkage of erythrocytes via K(Ca)3.1 and TMEM16A channels with subsequent phosphatidylserine exposure (2010) J. Biol. Chem., 285 (20), pp. 15557-15565. , http://www.jbc.org/content/285/20/15557.short, Available from:
  • Bencic, D.C., Yates, T.J., Ingermann, R.L., Ecto-ATPase activity of vertebrate blood cells (1997) Physiol. Zool., 70 (6), pp. 621-630
  • Zimmermann, H., Zebisch, M., Sträter, N., Cellular function and molecular structure of ecto-nucleotidases (2012) Purinergic Signal, 8 (3), pp. 437-502
  • Yegutkin, G.G., Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities (2014) Crit. Rev. Biochem. Mol. Biol., 49 (6), pp. 473-497
  • Lüthje, J., Schomburg, A., Ogilvie, A., Demonstration of a novel ecto-enzyme on human erythrocytes, capable of degrading ADP and of inhibiting ADP-induced platelet aggregation (1988) Eur. J. Biochem., 175 (2), pp. 285-289
  • Yegutkin, G.G., Samburski, S.S., Jalkanen, S., Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions (2003) FASEB J., 17 (10), pp. 1328-1330
  • Herlax, V., Bakás, L., Fatty acids covalently bound to α-hemolysin of Escherichia coli are involved in the molten globule conformation: implication of disordered regions in binding promiscuity (2007) Biochemistry, 46 (17), pp. 5177-5184
  • Lang, E., Lang, F., Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death (2015) Semin. Cell Dev. Biol., 39, pp. 35-42. , Available from:
  • Herlax, V., Maté, S., Rimoldi, O., Bakás, L., Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process (2009) J. Biol. Chem., 284 (37), pp. 25199-25210. , http://www.ncbi.nlm.nih.gov/pubmed/19596862, Available from
  • Munksgaard, P.S., Vorup-Jensen, T., Reinholdt, J., Söderström, C.M., Poulsen, K., Leipziger, J., Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes (2012) Cell. Microbiol., 14 (12), pp. 1904-1920
  • Maté, S.M., Vázquez, R.F., Herlax, V.S., Daza Millone, M.A., Fanani, M.L., Maggio, B., Boundary region between coexisting lipid phases as initial binding sites for Escherichia coli alpha-hemolysin: a real-time study (2014) Biochim. Biophys. Acta, 1838 (7), pp. 1832-1841. , http://www.ncbi.nlm.nih.gov/pubmed/24613790, Available from
  • Ostolaza, H., Bartolomé, B., de Zárate, I.O., de la Cruz, F., Goñi, F.M., Release of lipid vesicle contents by the bacterial protein toxin α-haemolysin (1993) Biochim. Biophys. Acta Biomembr., 1147 (1), pp. 81-88. , https://www.sciencedirect.com/science/article/pii/000527369390318T?via%3Dihub, Available from:
  • Morova, J., Osicka, R., Masin, J., Sebo, P., RTX cytotoxins recognize ␤ 2 integrin receptors through N-linked oligosaccharides. [cited 2018 Jun 14] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291121/pdf/zpq5355.pdf, Available from:; Locovei, S., Bao, L.L., Dahl, G., Pannexin 1 in erythrocytes: Function without a gap (2006) Proc. Natl. Acad. Sci., 103 (20), pp. 7655-7659. , http://www.pnas.org/content/103/20/7655.full, Available from:
  • Silverman, W.R., de Rivero Vaccari, J.P., Locovei, S., Qiu, F., Carlsson, S.K., Scemes, E., The pannexin 1 channel activates the inflammasome in neurons and astrocytes (2009) J. Biol. Chem., 284 (27), pp. 18143-18151. , http://www.jbc.org/content/early/2009/05/04/jbc.M109.004804.abstract, Available from:
  • Michalski, K., Kawate, T., Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop (2016) J. Gen. Physiol., 147 (2), pp. 165-174. , Available from:
  • Sridharan, M., Adderley, S.P., Bowles, E.A., Egan, T.M., Stephenson, A.H., Ellsworth, M.L., Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes (2010) Am. J. Physiol. Heart Circ. Physiol., 299 (4). , http://ajpheart.physiology.org/content/299/4/H1146.short, Available from:
  • Qiu, F., Wang, J., Spray, D.C., Scemes, E., Dahl, G., Two non-vesicular ATP release pathways in the mouse erythrocyte membrane (2011) FEBS Lett., 585 (21), pp. 3430-3435. , Available from:
  • Sluyter, R., Stokes, L., Significance of P2X7 receptor variants to human health and disease (2011) Recent Pat. DNA Gene Seq., 5 (1), pp. 41-54
  • Zimmermann, H., Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release (2016) Purinergic Signal, 12 (1), pp. 25-57
  • Denis, L., (2016) PLoS One, p. 2016. , Available from:
  • De Backer, D., Donadello, K., Taccone, F.S., Ospina-Tascon, G., Salgado, D., Vincent, J.-L., Microcirculatory alterations: potential mechanisms and implications for therapy (2011) Ann. Intensive Care, 1, p. 27. , http://www.annalsofintensivecare.com/content/1/1/27, Available from: (Internet)
  • Leal Denis, M., Lauri, N., Alvarez, C., Lefevre, S., Gonzalez-Lebrero, R., Espelt, M., Effects of α-hemolysin on human erythrocytes. Part 1. Regulation of extracellular ATP and cell volume (2018) Biochem. J.
  • Burnstock, G., Purinergic signalling: its unpopular beginning, its acceptance and its exciting future (2012) BioEssays, 34 (3), pp. 218-225
  • Mempin, R., Tran, H., Chen, C., Gong, H., Kim Ho, K., Lu, S., Release of extracellular ATP by bacteria during growth (2013) BMC Microbiol., 13 (1), pp. 1-13
  • Alvarez, C.L., Corradi, G., Lauri, N., Marginedas-Freixa, I., Leal Denis, M.F., Enrique, N., Dynamic regulation of extracellular ATP in Escherichia coli (2017) Biochem. J., 474 (8), pp. 1395-1416. , Available from:
  • Lang, F., Mechanisms and significance of cell volume regulation (2007) J. Am. Coll. Nutr., 26 (January 2015), pp. 613S-623S
  • Manodori, A.B., Barabino, G.A., Lubin, B.H., Kuypers, F.A., Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin (2000) Blood, 95 (4), pp. 1293-1300. , http://www.bloodjournal.org/content/95/4/1293.long?sso-checked=true, Available from:
  • Hardeman, M.R., Dobbe, J.G., Ince, C., The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer (2001) Clin. Hemorheol. Microcirc., 25 (1), pp. 1-11. , http://www.ncbi.nlm.nih.gov/pubmed/11790865, Available from
  • Silva-Herdade, A.S., Freitas, T., Almeida, J.P., Saldanha, C., Erythrocyte deformability and nitric oxide mobilization under pannexin-1 and PKC dependence (2015) Clin. Hemorheol. Microcirc., 59 (2), pp. 155-162. , http://www.ncbi.nlm.nih.gov/pubmed/24595130, Available from

Citas:

---------- APA ----------
Leal Denis, M.F., Lefevre, S.D., Alvarez, C.L., Lauri, N., Enrique, N., Rinaldi, D.E., Gonzalez-Lebrero, R.,..., Schwarzbaum, P.J. (2019) . Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis. Biochimica et Biophysica Acta - Molecular Cell Research, 1866(5), 896-915.
http://dx.doi.org/10.1016/j.bbamcr.2019.01.018
---------- CHICAGO ----------
Leal Denis, M.F., Lefevre, S.D., Alvarez, C.L., Lauri, N., Enrique, N., Rinaldi, D.E., et al. "Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis" . Biochimica et Biophysica Acta - Molecular Cell Research 1866, no. 5 (2019) : 896-915.
http://dx.doi.org/10.1016/j.bbamcr.2019.01.018
---------- MLA ----------
Leal Denis, M.F., Lefevre, S.D., Alvarez, C.L., Lauri, N., Enrique, N., Rinaldi, D.E., et al. "Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis" . Biochimica et Biophysica Acta - Molecular Cell Research, vol. 1866, no. 5, 2019, pp. 896-915.
http://dx.doi.org/10.1016/j.bbamcr.2019.01.018
---------- VANCOUVER ----------
Leal Denis, M.F., Lefevre, S.D., Alvarez, C.L., Lauri, N., Enrique, N., Rinaldi, D.E., et al. Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866(5):896-915.
http://dx.doi.org/10.1016/j.bbamcr.2019.01.018