Artículo

Moschen, S.; Di Rienzo, J.A.; Higgins, J.; Tohge, T.; Watanabe, M.; González, S.; Rivarola, M.; García-García, F.; Dopazo, J.; Hopp, H.E.; Hoefgen, R.; Fernie, A.R.; Paniego, N.; Fernández, P.; Heinz, R.A."Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)" (2017) Plant Molecular Biology. 94(4-5):549-564
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Key message: By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Abstract: Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability. © 2017, Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)
Autor:Moschen, S.; Di Rienzo, J.A.; Higgins, J.; Tohge, T.; Watanabe, M.; González, S.; Rivarola, M.; García-García, F.; Dopazo, J.; Hopp, H.E.; Hoefgen, R.; Fernie, A.R.; Paniego, N.; Fernández, P.; Heinz, R.A.
Filiación:Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
Computational Genomics Department, Centro de Investigación Príncipe Felipe. Functional Genomics Node (INB-ELIXIR-es). Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, 46012, Spain
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
Palabras clave:Data integration; Drought; Helianthus annuus L; Metabolomics; Sunflower; Transcriptomics; chlorophyll; plant protein; plant RNA; transcription factor; water; gene expression regulation; genetics; metabolism; physiological stress; physiology; plant leaf; protein microarray; sunflower; Chlorophyll; Gene Expression Regulation, Plant; Helianthus; Plant Leaves; Plant Proteins; Protein Array Analysis; RNA, Plant; Stress, Physiological; Transcription Factors; Water
Año:2017
Volumen:94
Número:4-5
Página de inicio:549
Página de fin:564
DOI: http://dx.doi.org/10.1007/s11103-017-0625-5
Handle:http://hdl.handle.net/20.500.12110/paper_01674412_v94_n4-5_p549_Moschen
Título revista:Plant Molecular Biology
Título revista abreviado:Plant. Mol. Biol.
ISSN:01674412
CODEN:PMBID
CAS:chlorophyll, 1406-65-1, 15611-43-5; water, 7732-18-5; Chlorophyll; Plant Proteins; RNA, Plant; Transcription Factors; Water
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01674412_v94_n4-5_p549_Moschen

Referencias:

  • Aguirrezábal, L., Orioli, G., Hernández, L.F., Pereyra, V., Miravé, J., (1996) Girasol: Aspectos fisiológicos que determinan el rendimiento, , Balcarce, Argentina
  • Allison, L.A., The role of sigma factors in plastid transcription (2000) Biochimie, 82, pp. 537-548. , COI: 1:CAS:528:DC%2BD3cXmtVeru70%3D, PID: 10946105
  • Alonso, R., Salavert, F., Garcia-Garcia, F., Carbonell-Caballero, J., Bleda, M., Garcia-Alonso, L., Sanchis-Juan, A., Dopazo, J., Babelomics 5.0: functional interpretation for new generations of genomic data (2015) Nucleic Acids Res, 43, pp. W117-W121. , COI: 1:CAS:528:DC%2BC2sXhtVymtb3K, PID: 25897133
  • Alpert, P., Simms, E.L., The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? (2002) Evol Ecol, 16, pp. 285-297
  • Amtmann, A., Blatt, M.R., Regulation of macronutrient transport (2009) New Phytol, 181, pp. 35-52. , COI: 1:CAS:528:DC%2BD1MXhtlaktrc%3D, PID: 19076716
  • Andrade, F.H., Gardiol, J.M., Sequía y producción de los cultivos de maíz, girasol y soja. Boletín técnico 132 (1994) EEA INTA Balcarce
  • Andrianasolo, F., Casadebaig, P., Langlade, N., Debaeke, P., Maury, P., Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower (2016) Funct Plant Biol, 43, p. 797. , COI: 1:CAS:528:DC%2BC28Xht1SitrnK
  • Ariel, F.D., Manavella, P., Dezar, C., Chan, R.L., The true story of the HD-Zip family (2007) Trends Plant Sci, 12, pp. 419-426. , COI: 1:CAS:528:DC%2BD2sXhtVWmur7I, PID: 17698401
  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Sherlock, G., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium (2000) Nat Genet, 25, pp. 25-29. , COI: 1:CAS:528:DC%2BD3cXjtFSlsbc%3D, PID: 10802651
  • Ashraf, M., Foolad, M.R., Roles of glycine betaine and proline in improving plant abiotic stress resistance (2007) Environ Exp Bot, 59, pp. 206-216. , COI: 1:CAS:528:DC%2BD28Xht1Cqtb%2FF
  • Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A.-S., Bordenave, M., Maldiney, R., Jdey, A., Savouré, A., Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana (2015) New Phytol, 208, pp. 1138-1148. , COI: 1:CAS:528:DC%2BC2MXhvVWqs7bN, PID: 26180024
  • Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) J R Stat Soc B, 57, pp. 289-300
  • Borsani, O., Díaz, P., Monza, J., Proline is involved in water stress responses of lotus corniculatus nitrogen fixing and nitrate fed plants (1999) J Plant Physiol, 155, pp. 269-273. , COI: 1:CAS:528:DyaK1MXltV2nsLw%3D
  • Cabello, J.V., Arce, A.L., Chan, R.L., The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins (2012) Plant J, 69, pp. 141-153. , COI: 1:CAS:528:DC%2BC38XhtFWnt7k%3D, PID: 21899607
  • Cabello, J.V., Giacomelli, J.I., Piattoni, C.V., Iglesias, A.A., Chan, R.L., The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants (2016) J Biotechnol, 222, pp. 73-83. , COI: 1:CAS:528:DC%2BC28Xis1Giurc%3D, PID: 26876611
  • Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Stanca, A.M., Drought tolerance improvement in crop plants: an integrated view from breeding to genomics (2008) Field Crop Res, 105, pp. 1-14
  • Cellier, F., Conejero, G., Breitler, J.C., Casse, F., Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance (1998) Plant Physiol, 116, pp. 319-328. , COI: 1:CAS:528:DyaK1cXkslGjtw%3D%3D, PID: 9499218
  • Chaves, M.M., Flexas, J., Pinheiro, C., Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell (2009) Ann Bot, 103, pp. 551-560. , COI: 1:CAS:528:DC%2BD1MXktVGnu7s%3D, PID: 18662937
  • Chi, W., He, B., Mao, J., Jiang, J., Zhang, L., Plastid sigma factors: their individual functions and regulation in transcription (2015) Biochim Biophys Acta, 1847, pp. 770-778. , COI: 1:CAS:528:DC%2BC2MXht1KqtL0%3D, PID: 25596450
  • Chimenti, C.A., Marcantonio, M., Hall, A.J., Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases (2006) F Crop Res, 95, pp. 305-315
  • Ciríaco da Silva, E., Mansur Custódio Nogueira, R.J., Almeida da Silva, M., Bandeira de Albuquerque, M., Drought stress and plant nutrition (2011) Plant Stress, 5, pp. 32-41
  • Connor, D.J., Jones, T.R., Response of sunflower to strategies of irrigation II. Morphological and physiological responses to water stress (1985) Field Crop Res, 12, pp. 91-103
  • Connor, D.J., Palta, J.A., Jones, T.R., Response of sunflower to strategies of irrigation. III. Crop photosynthesis and transpiration (1985) Field Crop Res, 12, pp. 281-283
  • Corti Monzón, G., Pinedo, M., Di Rienzo, J., Novo-Uzal, E., Pomar, F., Lamattina, L., de la Canal, L., Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses (2014) Nitric Oxide, 39, pp. 20-28. , PID: 24747108
  • Couso, L.L., Fernández, R.J., Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses (2012) Ann Bot, 110, pp. 849-857. , COI: 1:STN:280:DC%2BC38jovFGltg%3D%3D, PID: 22782237
  • Cramer, G.R., Ergül, A., Grimplet, J., Tillett, R.L., Tattersall, E.A.R., Bohlman, M.C., Vincent, D., Cushman, J.C., Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles (2007) Funct Integr Genom, 7, pp. 111-134. , COI: 1:CAS:528:DC%2BD2sXitVGqur0%3D
  • DaMatta, F.M., Loos, R.A., Silva, E.A., Loureiro, M.E., Ducatti, C., Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre (2002) Trees, 16, pp. 555-558. , COI: 1:CAS:528:DC%2BD38XnvVSgsbw%3D
  • De Witt, T., Sih, A., Wilson, D., Costs and limits of phenotypic plasticity (1998) Trends Ecol Evol, 13, pp. 77-81
  • Dezar, C.A., Fedrigo, G.V., Chan, R.L., The promoter of the sunflower HD-Zip protein gene Hahb4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA (2005) Plant Sci, 169, pp. 447-456. , COI: 1:CAS:528:DC%2BD2MXlvFaltrk%3D
  • Dezar, C.A., Gago, G.M., Gonzalez, D.H., Chan, R.L., Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants (2005) Transgenic Res, 14, pp. 429-440. , COI: 1:CAS:528:DC%2BD2MXmvVWqtb4%3D, PID: 16201409
  • Díaz, P., Betti, M., García-Calderón, M., Pérez-Delgado, C.M., Signorelli, S., Borsani, O., Márquez, A.J., Monza, J., Amino acids and drought stress in lotus: use of transcriptomics and plastidic glutamine synthetase mutants for new insights in proline metabolism (2014) Plant adaptation to environmental change: significance of amino acids and their derivatives, , Anjum NA, Gill SS, Gill R, (eds), CABI International, Boston
  • Dubois, M., Gilles, K., Hamilton, J., Rebus, P., Smith, F., Colorimetric method for the determination of sugars and related substances (1956) Anal Chem, 28, pp. 350-356. , COI: 1:CAS:528:DyaG28XjvFynsg%3D%3D
  • Dumas, A., (1826) Annales de chimie, 33, p. 342
  • El-Maarouf-Bouteau, H., Sajjad, Y., Bazin, J., Langlade, N., Cristescu, S.M., Balzergue, S., Baudouin, E., Bailly, C., Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination (2015) Plant Cell Environ, 38, pp. 364-374. , COI: 1:CAS:528:DC%2BC2MXhsVWqs7g%3D, PID: 24811898
  • Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M., Aroca, R., Drought Stress in plants: an overview (2012) Plant responses to drought stress—from morphological to molecular features, pp. 1-33. , Springer, Berlin
  • Fernandez, P., Rienzo, D., Fernandez, L., Hopp, H.E., Paniego, N., Heinz, R.A., Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis (2008) BMC Plant Biol, 8, pp. 1-18
  • Fernandez, P., Di Rienzo, J.A., Moschen, S., Dosio, G.A., Aguirrezabal, L.A., Hopp, H.E., Paniego, N., Heinz, R.A., Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis (2011) Plant Cell Rep, 30, pp. 63-74. , COI: 1:CAS:528:DC%2BC3MXmvFSm, PID: 21076836
  • Fernandez, P., Soria, M., Blesa, D., DiRienzo, J., Moschen, S., Rivarola, M., Clavijo, B.J., Paniego, N., Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray (2012) PLoS ONE, 7, pp. 1-11
  • Gago, G.M., Almoguera, C., Jordano, J., Gonzalez, D.H., Chan, R.L., Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower (2002) Plant Cell Environ, 25, pp. 633-640. , COI: 1:CAS:528:DC%2BD38XktlertLw%3D
  • Gershenzon, J., Dudareva, N., The function of terpene natural products in the natural world (2007) Nat Chem Biol, 3, pp. 408-414. , COI: 1:CAS:528:DC%2BD2sXms1SrsLc%3D, PID: 17576428
  • Giordani, T., Natali, L., D’Ercole, A., Pugliesi, C., Fambrini, M., Vernieri, P., Vitagliano, C., Cavallini, A., Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.) (1999) Plant Mol Biol, 39, pp. 739-748. , COI: 1:CAS:528:DyaK1MXjtFSqs70%3D, PID: 10350088
  • Hanson, A.D., Scott, N.A., Betaine synthesis from radioactive precursors in attached, water-stressed barley leaves (1980) Plant Physiol, 66, pp. 342-348. , COI: 1:CAS:528:DyaL3cXlsVKnsrY%3D, PID: 16661434
  • Huang, L., Ye, Z., Bell, R.W., Dell, B., Boron nutrition and chilling tolerance of warm climate crop species (2005) Ann Bot, 96, pp. 755-767. , COI: 1:CAS:528:DC%2BD2MXhtFOjsLbN, PID: 16033777
  • Inskeep, W.P., Bloom, P.R., Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone (1985) Plant Physiol, 77, pp. 483-485. , COI: 1:CAS:528:DyaL2MXht12jtrc%3D, PID: 16664080
  • Jahantigh, O., Najafi, F., Badi, H.N., Khavari-Nejad, R.A., Sanjarian, F., Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress (2016) Acta Biol Hung, 67, pp. 195-204. , COI: 1:CAS:528:DC%2BC2sXntlCitL4%3D, PID: 27165530
  • Kiani, S.P., Talia, P., Maury, P., Grieu, P., Heinz, R., Perrault, A., Nishinakamasu, V., Sarrafi, A., Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments (2007) Plant Sci, 172, pp. 773-787. , COI: 1:CAS:528:DC%2BD2sXisVSqurk%3D
  • Kiani, S.P., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., Sarrafi, A., Kiani, P.S., Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.) (2007) Theor Appl Genet, 114, pp. 193-207. , COI: 1:CAS:528:DC%2BD28XhtlWntb3E
  • Kiniry, J.R., Blanchet, R., Williams, J.R., Texier, V., Jones, K., Cabelguenne, M., Sunflower simulation using the EPIC and ALMANAC models (1992) Field Crop Res, 30, pp. 403-423
  • Kratsch, H.A., Wise, R.R., The ultrastructure of chilling stress (2000) Plant Cell Environ, 23, pp. 337-350. , COI: 1:CAS:528:DC%2BD3cXjsFCktLo%3D
  • Langfelder, P., Horvath, S., WGCNA: an R package for weighted correlation network analysis (2008) BMC Bioinformatics, 9, p. 559. , PID: 19114008
  • Lohse, M., Nagel, A., Herter, T., May, P., Schroda, M., Zrenner, R., Tohge, T., Usadel, B., Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data (2014) Plant Cell Environ, 37, pp. 1250-1258. , COI: 1:CAS:528:DC%2BC2cXlvFSktr8%3D, PID: 24237261
  • Luedemann, A., Strassburg, K., Erban, A., Kopka, J., TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments (2008) Bioinformatics, 24, pp. 732-737. , COI: 1:CAS:528:DC%2BD1cXislKltL0%3D, PID: 18204057
  • Maas, E.V., Hoffman, G.J., Crop salt tolerance, current assessment (1977) J Irrig Drain Div ASCE, 103, pp. 115-134
  • Mahouachi, J., Socorro, A.R., Talon, M., Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance (2006) Plant Soil, 281, pp. 137-146. , COI: 1:CAS:528:DC%2BD28Xktlyhsb8%3D
  • Manavella, P.A., Arce, A.L., Dezar, C.A., Bitton, F., Renou, J.-P.P., Crespi, M., Chan, R.L., Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor (2006) Plant J, 48, pp. 125-137. , COI: 1:CAS:528:DC%2BD28XhtFalsb7M, PID: 16972869
  • Manavella, P.A., Dezar, C.A., Bonaventure, G., Baldwin, I.T., Chan, R.L., HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses (2008) Plant J, 56, pp. 376-388. , COI: 1:CAS:528:DC%2BD1cXhsVGmtbrJ, PID: 18643970
  • Manavella, P.A., Dezar, C., Ariel, F.D., Drincovich, M.F., Chan, R.L., The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes (2008) J Exp Bot, 59, pp. 3143-3155. , COI: 1:CAS:528:DC%2BD1cXpslalsLg%3D, PID: 18603614
  • Masclaux-Daubresse, C., Valadier, M.-H., Carrayol, E., Reisdorf-Cren, M., Hirel, B., Diurnal changes in the expressionof glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves (2002) Plant Cell Environ, 25, pp. 1451-1462. , COI: 1:CAS:528:DC%2BD38XovFWhtbo%3D
  • Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., Varshney, R.K., Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops (2012) Theor Appl Genet, 125, pp. 625-645. , COI: 1:CAS:528:DC%2BC38XhtFWhsLjF, PID: 22696006
  • Montaner, D., Dopazo, J., Multidimensional gene set analysis of genomic data (2010) PLoS ONE, 5. , PID: 20436964
  • Moschen, S., Bengoa Luoni, S., Paniego, N.B., Hopp, H.E., Dosio, G.A.A., Fernandez, P., Heinz, R.A., Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.) (2014) PLoS ONE, 9. , PID: 25110882
  • Moschen, S., Radonic, L.M., Ehrenbolger, G.F., Fernández, P., Lía, V., Paniego, N.B., López Bilbao, M., Arribas, J.I., Functional genomics and transgenesis applied to sunflower breeding (2014) Sunflowers: growth and development, environmental influences and pests/diseases, pp. 131-164. , Nova Science Publishers, Hauppauge
  • Moschen, S., Bengoa Luoni, S., Di Rienzo, J., Caro, M., Tohge, T., Watanabe, M., Hollmann, J., Heinz, R., Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower (2016) Plant Biotechnol J, 14, pp. 719-734. , COI: 1:CAS:528:DC%2BC28XitVSlu7s%3D, PID: 26132509
  • Moschen, S., Higgins, J., Di Rienzo, J.A., Heinz, R.A., Paniego, N., Fernandez, P., Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower (2016) BMC Bioinformatics, 17, p. 174. , PID: 27295368
  • Nagashima, A., Hanaoka, M., Shikanai, T., Fujiwara, M., Kanamaru, K., Takahashi, H., Tanaka, K., The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana (2004) Plant Cell Physiol, 45, pp. 357-368. , COI: 1:CAS:528:DC%2BD2cXjsFKhtL8%3D, PID: 15111710
  • Nakabayashi, R., Mori, T., Saito, K., (2014) Plant Signal Behav, 9
  • Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Saito, K., Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids (2014) Plant J, 77, pp. 367-379. , COI: 1:CAS:528:DC%2BC2cXht1eht78%3D, PID: 24274116
  • Ouvrard, O., Cellier, F., Ferrare, K., Tousch, D., Lamaze, T., Dupuis, J.M., Casse-Delbart, F., Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype (1996) Plant Mol Biol, 31, pp. 819-829. , COI: 1:CAS:528:DyaK28XlslCktbo%3D, PID: 8806412
  • Palmer-Young, E.C., Veit, D., Gershenzon, J., Schuman, M.C., The sesquiterpenes(E)-ß-farnesene and (E)-α-bergamotene quench ozone but fail to protect the wild tobacco Nicotiana attenuata from ozone, UVB, and drought stresses (2015) PLoS ONE, 10. , PID: 26030663
  • Peluffo, L., Lia, V., Troglia, C., Maringolo, C., Norma, P., Escande, A., Esteban Hopp, H., Carrari, F., Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection (2010) Phytochemistry, 71, pp. 70-80. , COI: 1:CAS:528:DC%2BD1MXhsFyks7zF, PID: 19853265
  • Pereyra-Irujo, G.A., Velázquez, L., Granier, C., Aguirrezábal, L.A.N., A method for drought tolerance screening in sunflower (2007) Plant Breed, 126, pp. 445-448
  • Pérez-Rodríguez, P., Riaño-Pachón, D.M., Corrêa, L.G.G., Rensing, S.A., Kersten, B., Mueller-Roeber, B., PlnTFDB: updated content and new features of the plant transcription factor database (2010) Nucleic Acids Res, 38, pp. D822-D827. , PID: 19858103
  • DebRoy S (2012) Sarkar D, , Pinheiro J, Bates Dnlme: linear and nonlinear mixed effects models. R package
  • Planchet, E., Verdu, I., Delahaie, J., Cukier, C., Girard, C., Morère-Le Paven, M.-C., Limami, A.M., Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula (2014) J Exp Bot, 65, pp. 2161-2170. , COI: 1:CAS:528:DC%2BC2cXmsVGktb0%3D, PID: 24604737
  • R: a language and environment for statistical computing (2012) R Foundation for Statistical Computing
  • Raineri, J., Ribichich, K.F., Chan, R.L., The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty (2015) Plant Cell Rep, 34, pp. 2065-2080. , COI: 1:CAS:528:DC%2BC2MXht12mt77I, PID: 26245532
  • Roche, J., Hewezi, T., Bouniols, A., Gentzbittel, L., Transcriptional profiles of primary metabolism and signal transduction-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray (2007) Planta, 226, pp. 601-617. , COI: 1:CAS:528:DC%2BD2sXnsVeqtbg%3D, PID: 17370086
  • Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., Fernie, A.R., Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development (2003) Plant Physiol, 133, pp. 84-99. , COI: 1:CAS:528:DC%2BD3sXntlaitLw%3D, PID: 12970477
  • Rousseaux, M.C.C., Hall, A.J., Sanchez, R.A., Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower (1996) Physiol Plant, 96, pp. 217-224. , COI: 1:CAS:528:DyaK28XivFeksbc%3D
  • Rozen, S., Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers (2000) Bioinform Methods Protoc, 132, pp. 365-386. , COI: 1:CAS:528:DyaK1MXmslKqsbo%3D
  • Ruiz-Lozano, J.M., Azcón, R., Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants (1996) Agric Ecosyst Environ, 60, pp. 175-181. , COI: 1:CAS:528:DyaK28XntlKksrs%3D
  • Sadras, V.O., Whitfi eld, D.M., Connor, D.J., Regulation of evapotranspiration and its partitioning between transpiration and soil evaporation by sunflower crops. A comparison between hybrids of different stature (1991) Field Crop Res, 28, pp. 17-37
  • Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., Fernie, A.R., The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity (2013) Plant Physiol Biochem, 72, pp. 21-34. , COI: 1:CAS:528:DC%2BC3sXjsFyhtrw%3D, PID: 23473981
  • Sartor, M.A., Leikauf, G.D., Medvedovic, M., LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data (2009) Bioinformatics, 25, pp. 211-217. , COI: 1:CAS:528:DC%2BD1MXntFWhsg%3D%3D, PID: 19038984
  • Schaefer, R.J., Michno, J.-M., Myers, C.L., Unraveling gene function in agricultural species using gene co-expression networks (2016) Biochim Biophys Acta-Gene Regul Mech
  • Schmidhuber, J., Tubiello, F.N., Global food security under climate change (2007) Proc Natl Acad Sci USA, 104, pp. 19703-19708. , COI: 1:CAS:528:DC%2BD1cXitFSltA%3D%3D, PID: 18077404
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 13, pp. 2498-2504. , COI: 1:CAS:528:DC%2BD3sXovFWrtr4%3D, PID: 14597658
  • Sharkey, T.D., Isoprene increases thermotolerance of fosmidomycin-fed leaves (2001) Plant Physiol, 125, pp. 2001-2006. , COI: 1:CAS:528:DC%2BD3MXjtFKqurs%3D, PID: 11299379
  • Sharkey, T.D., Wiberley, A.E., Donohue, A.R., Isoprene emission from plants: why and how (2008) Ann Bot, 101, pp. 5-18. , COI: 1:CAS:528:DC%2BD1cXitlansrg%3D, PID: 17921528
  • Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Roubelakis-Angelakis, K.A., Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine (2006) Plant Cell, 18, pp. 2767-2781
  • Smyth, G., Limma: linear models for microarray data (2005) Bioinformatics and computational biology solutions using R and bioconductor, pp. 397-420
  • Sperdouli, I., Moustakas, M., Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress (2012) J Plant Physiol, 169, pp. 577-585. , COI: 1:CAS:528:DC%2BC38XhvVGntrY%3D, PID: 22305050
  • Tardieu, F., Tuberosa, R., Dissection and modelling of abiotic stress tolerance in plants (2010) Curr Opin Plant Biol, 13, pp. 206-212. , PID: 20097596
  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Müller, L., MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J, 37, pp. 914-939. , COI: 1:CAS:528:DC%2BD2cXjtFChu78%3D, PID: 14996223
  • Thomas, W.T.B., Drought-resistant cereals: impact on water sustainability and nutritional quality (2015) Proc Nutr Soc, 74, pp. 191-197. , COI: 1:STN:280:DC%2BC2MrnsFahsA%3D%3D, PID: 25702698
  • Tran, L.-S.P., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S.D., Maruyama, K., Yamaguchi-Shinozaki, K., Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis (2006) Plant J, 49, pp. 46-63
  • Utrillas, M.J., Alegre, L., Simon, E., Seasonal changes in production and nutrient content of Cynodon dactylon (L.) Pers. subjected to water deficits (1995) Plant Soil, 175, pp. 153-157. , COI: 1:CAS:528:DyaK2MXot1Kgsrw%3D
  • van Kleunen, M., Fischer, M., Constraints on the evolution of adaptive phenotypic plasticity in plants (2005) New Phytol, 166, pp. 49-60. , PID: 15760350
  • Vickers, C.E., Gershenzon, J., Lerdau, M.T., Loreto, F., A unified mechanism of action for volatile isoprenoids in plant abiotic stress (2009) Nat Chem Biol, 5, pp. 283-291. , COI: 1:CAS:528:DC%2BD1MXks12ksbg%3D, PID: 19377454
  • Wang, W., Wu, P., Li, Y., Hou, X., Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage (2016) Mol Genet Genom, 291, pp. 1451-1464. , COI: 1:CAS:528:DC%2BC2MXhslyksLvM
  • Yaish, M.W., Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.) (2015) Genet Mol Res, 14, pp. 9943-9950. , COI: 1:CAS:528:DC%2BC28XpsV2it7w%3D, PID: 26345930
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y., Effects of free proline accumulation in petunias under drought stress (2005) J Exp Bot, 56, pp. 1975-1981. , COI: 1:CAS:528:DC%2BD2MXpvFKntbg%3D, PID: 15928013

Citas:

---------- APA ----------
Moschen, S., Di Rienzo, J.A., Higgins, J., Tohge, T., Watanabe, M., González, S., Rivarola, M.,..., Heinz, R.A. (2017) . Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Molecular Biology, 94(4-5), 549-564.
http://dx.doi.org/10.1007/s11103-017-0625-5
---------- CHICAGO ----------
Moschen, S., Di Rienzo, J.A., Higgins, J., Tohge, T., Watanabe, M., González, S., et al. "Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)" . Plant Molecular Biology 94, no. 4-5 (2017) : 549-564.
http://dx.doi.org/10.1007/s11103-017-0625-5
---------- MLA ----------
Moschen, S., Di Rienzo, J.A., Higgins, J., Tohge, T., Watanabe, M., González, S., et al. "Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)" . Plant Molecular Biology, vol. 94, no. 4-5, 2017, pp. 549-564.
http://dx.doi.org/10.1007/s11103-017-0625-5
---------- VANCOUVER ----------
Moschen, S., Di Rienzo, J.A., Higgins, J., Tohge, T., Watanabe, M., González, S., et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant. Mol. Biol. 2017;94(4-5):549-564.
http://dx.doi.org/10.1007/s11103-017-0625-5