Abstract:
We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman's discrete Morse theory for CW-complexes and generalizes Forman and Chari's results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations. © 2012 Elsevier B.V.
Referencias:
- Barmak, J.A., Algebraic Topology of Finite Topological Spaces and Applications (2011) Lecture Notes in Math., 2032. , Springer
- Barmak, J.A., Star clusters in independence complexes of graphs, , arxiv:1007.0418v1, Preprint
- Barmak, J.A., Minian, E.G., Simple homotopy types and finite spaces (2008) Adv. Math., 218 (1), pp. 87-104
- Barmak, J.A., Minian, E.G., One-point reductions of finite spaces, h-regular CW-complexes and collapsibility (2008) Algebr. Geom. Topol., 8 (3), pp. 1763-1780
- Björner, A., Las Vergnas, M., Sturmfelds, B., White, N., Ziegler, G., Oriented Matroids (1999) Encyclopedia Math. Appl., , Cambridge University Press
- Bott, R., The stable homotopy of the classical groups (1959) Ann. of Math. (2), 70, pp. 313-337
- Brown, R., (2006) Topology and Groupoids, , BookSurge LLC
- Capitelli, N., (2009), http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/capitelli.pdf, Colapsabilidad en variedades combinatorias y espacios de deformaciones, Diploma Thesis, Universidad de Buenos Aires, available at; Chari, M., On discrete Morse functions and combinatorial decompositions (2000) Discrete Math., 217 (1-3), pp. 101-113. , Formal Power Series and Algebraic Combinatorics
- Forman, R., Morse theory for cell complexes (1998) Adv. Math., 134 (1), pp. 90-145
- Forman, R., Witten-Morse theory for cell complexes (1998) Topology, 37 (5), pp. 945-979
- Forman, R., A user's guide to discrete Morse theory (2002) Sem. Lothar. Combin., 48, p. 35. , Art. B48c
- Kozlov, D., Combinatorial Algebraic Topology (2008) Algorithms Comput. Math., 21. , Springer, Berlin
- Lickorish, W., Simplicial moves on complexes and manifolds (1999) Geom. Topol. Monogr., 2, pp. 299-320
- May, J.P., Finite topological spaces, Notes for REU, , http://www.math.uchicago.edu/~may/MISCMaster.html, available at
- McCord, M.C., Singular homology groups and homotopy groups of finite topological spaces (1966) Duke Math. J., 33, pp. 465-474
- Milnor, J., On manifolds homeomorphic to the 7-sphere (1956) Ann. of Math., 64, pp. 399-405
- Milnor, J., Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells (1963) Ann. of Math. Stud., 51, pp. vi+153. , Princeton University Press, Princeton, NJ
- Milnor, J., (1965) Lectures on the h-Cobordism Theorem, pp. v+116. , Princeton University Press, Princeton, NJ
- Negami, S., Tsuchiya, M., Manifold posets (1994) Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem., 41, pp. 23-32
- Rietsch, K., Williams, L., Discrete Morse theory for totally non-negative flag varieties (2010) Adv. Math., 223 (6), pp. 1855-1884
- Stong, R.E., Finite topological spaces (1966) Trans. Amer. Math. Soc., 123, pp. 325-340
Citas:
---------- APA ----------
(2012)
. Some remarks on Morse theory for posets, homological Morse theory and finite manifolds. Topology and its Applications, 159(12), 2860-2869.
http://dx.doi.org/10.1016/j.topol.2012.05.027---------- CHICAGO ----------
Minian, E.G.
"Some remarks on Morse theory for posets, homological Morse theory and finite manifolds"
. Topology and its Applications 159, no. 12
(2012) : 2860-2869.
http://dx.doi.org/10.1016/j.topol.2012.05.027---------- MLA ----------
Minian, E.G.
"Some remarks on Morse theory for posets, homological Morse theory and finite manifolds"
. Topology and its Applications, vol. 159, no. 12, 2012, pp. 2860-2869.
http://dx.doi.org/10.1016/j.topol.2012.05.027---------- VANCOUVER ----------
Minian, E.G. Some remarks on Morse theory for posets, homological Morse theory and finite manifolds. Topol. Appl. 2012;159(12):2860-2869.
http://dx.doi.org/10.1016/j.topol.2012.05.027