Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In chloroplasts, the light-modulated fructose-1,6-bisphosphatase catalyzes the formation of fructose 6-bisphosphate for the photosynthetic assimilation of CO2 and the biosynthesis of starch. We report here the construction of a plasmid for the production of chloroplast fructose-1,6-bisphosphatase in a bacterial system and the subsequent purification to homogeneity of the genetically engineered enzyme. To this end, a DNA sequence that coded for chloroplast fructose-1,6-bisphosphatase of rapeseed (Brassica napus) leaves was successively amplified by PCR, ligated into the Ndel/EcoRI restriction site of the expression vector pET22b, and introduced into Escherichia coli cells. When gene expression was induced by isopropyl-β-d-thiogalactopyranoside, supernatants of cell lysates were extremely active in the hydrolysis of fructose 1,6-bisphosphate. Partitioning bacterial soluble proteins by ammonium sulfate followed by anion exchange chromatography yielded 10 mg of homogeneous enzyme per 1 of culture. Congruent with a preparation devoid of contaminating proteins, the Edman degradation evinced an unique N-terminal amino acid sequence [A-V-A-A-D-A-T-A-E-T-K-P-]. Gel filtration experiments and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the (recombinant) rapeseed chloroplast fructose-1,6-bisphosphatases was a tetramer [160 kDa] comprised of four identical subunits. Like other chloroplast fructose-1,6-bisphosphatases, the recombinant enzyme was inactive at 1 mM fructose 1,6-bisphosphate and 1 mM Mg2+ but became fully active after an incubation in the presence of either 10 mM dithiothreitol or 1 mM dithiothreitol and chloroplast thioredoxin. However, at variance with counterparts isolated from higher plant leaves, the low activity observed in absence of reductants was not greatly enhanced by high concentrations of fructose 1,6-bisphosphate (3 mM) and Mg2+ (10 mM). In the catalytic process, all chloroplast fructose-1,6-bisphosphatases had identical features; viz., the requirement of Mg2+ as cofactor and the inhibition by Ca2+. Thus, the procedure described here should prove useful for the structural and kinetic analysis of rapeseed chloroplast fructose-1,6-bisphosphatase in view that this enzyme was not isolated from leaves. © 1995 Kluwer Academic Publishers.

Registro:

Documento: Artículo
Título:High level expression in Escherichia coli, purification and properties of chloroplast fructose-1,6-bisphosphatase from rapeseed (Brassica napus) leaves
Autor:Rodriguez-Suarez, R.J.; Wolosiuk, R.A.
Filiación:Instituto de Investigaciones Bioquímicas (Fundación Campomar, IIBBA-CONICET, FCEN-UBA), Antonio Machado 151, Buenos Aires, 1405, Argentina
Palabras clave:Brassica napus; chloroplast; fructose-1,6-bisphosphatase; rapeseed; recombinant enzyme; reductive activation
Año:1995
Volumen:46
Número:1-2
Página de inicio:313
Página de fin:322
DOI: http://dx.doi.org/10.1007/BF00020446
Título revista:Photosynthesis Research
Título revista abreviado:Photosynth Res
ISSN:01668595
CODEN:PHRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01668595_v46_n1-2_p313_RodriguezSuarez

Referencias:

  • Ballicora, M.A., Wolosiuk, R.A., Enhancement of the reductive activation of chloroplast fructose-1,6-bisphosphatase by modulators and protein perturbants (1994) Eur J Biochem, 222, pp. 467-474
  • Buchanan, B.B., Regulation of CO<inf>2</inf> assimilation in oxygenic photosynthesis: The ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development (1991) Arch Biochem Biophys, 288, pp. 1-9
  • Carrasco, J.L., Chueca, A., Prado, F.E., Hermoso, R., Lázaro, J.J., Ramos, J.L., Sahrawy, M., Lopez-Gorge, J., Cloning, structure and expression of a pea cDNA clone coding for a photosynthetic fructose-1,6-bisphosphatase with some features different from those of the leaf chloroplast enzyme (1994) Planta, 193, pp. 494-501
  • Chen, P.S., Toribara, T.I., Warner, H., Microdetermination of phosphorus (1956) Anal Chem, 28, pp. 1756-1758
  • Dilley, R.A., Vernon, L.P., Ion and water transport processes related to light-dependent shrinkage of spinach chloroplasts (1965) Arch Biochem Biophys, 111, pp. 365-375
  • Droux, M., Crawford, N.A., Buchanan, B.B., Mechanism of thioredoxin-linked activation of chloroplast fructose-1,6-bisphosphatase (1988) Compt Rend Acad Sci, 305, pp. 335-342
  • Fonollá, J., Hermoso, R., Carrasco, J.L., Chueca, A., Lázaro, J.J., Prado, F., Lopez-Gorgé, J., Antigenic relationships between chloroplast and cytosolic fructose-1,6-bisphosphatases (1994) PLANT PHYSIOLOGY, 104, pp. 381-386
  • Heber, U., Takahama, U., Neimanis, S., Shimizu-Takahama, M., Transport as the basis of the Kok effect. Levels of some photosynthetic intermediates and activation of light-regulated enzymes during photosynthesis of chloroplasts and green leaf protoplasts (1982) Biochim Biophys Acta, 679, pp. 287-299
  • Heldt, H.W., Werdan, K., Milovancev, M., Geller, G., Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space (1973) Biochim Biophys Acta, 314, pp. 224-241
  • Hertig, C.M., Wolosiuk, R.A., Studies on the hysteretic properties of chloroplast fructose-1,6-bisphosphatase (1983) J Biol Chem, 258, pp. 984-989
  • Hirel, Schmitter, J-M, Dessen, P., Fayat, G., Blanquet, S., Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid (1989) Proc Natl Acad Sci USA, 86, pp. 8274-8251
  • Huppe, H.C., Buchanan, B.B., Activation of a chloroplast type of fructose-1,6-bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents (1989) Z Naturforsch, 44 (100), pp. 487-494
  • Kelly, G.J., Zimmerman, G., Latzko, E., Fructose bisphosphatase from spinach chloroplast and cytoplasm (1982) Meth Enzymol, 90, pp. 371-378
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Leegood, R.C., Walker, D.A., Modulation of fructose bisphosphatase activity in intact chloroplasts (1980) FEBS Letters, 116, pp. 21-24
  • Lilley, Chon, C.J.C., Mosbach, A., Heldt, H.W., The distribution of metabolites between spinach chloroplasts and medium during photosynthesis in vitro (1977) Biochim Biophys Acta, 460, pp. 259-272
  • Marcus, F., Harrsch, P.B., Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase (1990) Arch Biochem Biophys, 279, pp. 151-157
  • Rodriguez-Andres, A., Lázaro, J.J., Chueca, A., Hermoso, R., Lopez-Gorge, J., Effect of alcohols on the association of photosynthetic fructose-1,6-bisphosphatase to thylakoid membranes (1990) Physiol Pl, 78, pp. 409-413
  • Rodriguez-Suarez, R.J., Wolosiuk, R.A., Sequence of a cDNA encoding chloroplast fructose-1,6-bisphosphatase from rapeseed (1993) Plant Physiol, 103, pp. 1453-1454
  • Sambrook, J., Fritsch, E., Maniatis, T., (1989) Molecular Cloning. A Laboratory Manual, , 2nd ed, Cold Spring Laboratory Press, New York
  • Schürmann, P., Wolosiuk, R.A., Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase (1978) Biochimica et Biophysica Acta (BBA) - Enzymology, 522, pp. 130-138
  • Stein M (1987) Estudios de regulación enzimática en sistemas fotosintéticos. PhD Thesis, University of Buenos Aires; Stein, M., Wolosiuk, R.A., The effect of chaotropic anions on the activation and the activity of spinach chloroplast fructose-1,6-bisphosphatase (1987) J Biol Chem, 262, pp. 16171-16179
  • Stein, M., Lázaro, J.J., Wolosiuk, R.A., Concerted action of cosolvents, chaotropic anions and thioredoxin on chloroplast fructose-1,6-bisphosphatase. Reactivity to iodoacetamide (1989) Eur J Biochem, 185, pp. 425-431
  • Stitt, M., Quick, W.P., Photosynthetic carbon partitioning: its regulation and possibilities for manipulation (1989) Physiologia Plantarum, 77, pp. 633-641
  • Wolosiuk, R.A., Crawford, N.A., Yee, B.C., Buchanan, B.B., Isolation of three thioredoxins from spinach leaves (1979) J Biol Chem, 254, pp. 1627-1632
  • Wolosiuk, R.A., Ballicora, M.A., Hagelin, K., The reductive pentose phosphate cycle for photosynthetic CO<inf>2</inf> assimilation: enzyme modulation (1993) FASEB J, 7, pp. 622-637

Citas:

---------- APA ----------
Rodriguez-Suarez, R.J. & Wolosiuk, R.A. (1995) . High level expression in Escherichia coli, purification and properties of chloroplast fructose-1,6-bisphosphatase from rapeseed (Brassica napus) leaves. Photosynthesis Research, 46(1-2), 313-322.
http://dx.doi.org/10.1007/BF00020446
---------- CHICAGO ----------
Rodriguez-Suarez, R.J., Wolosiuk, R.A. "High level expression in Escherichia coli, purification and properties of chloroplast fructose-1,6-bisphosphatase from rapeseed (Brassica napus) leaves" . Photosynthesis Research 46, no. 1-2 (1995) : 313-322.
http://dx.doi.org/10.1007/BF00020446
---------- MLA ----------
Rodriguez-Suarez, R.J., Wolosiuk, R.A. "High level expression in Escherichia coli, purification and properties of chloroplast fructose-1,6-bisphosphatase from rapeseed (Brassica napus) leaves" . Photosynthesis Research, vol. 46, no. 1-2, 1995, pp. 313-322.
http://dx.doi.org/10.1007/BF00020446
---------- VANCOUVER ----------
Rodriguez-Suarez, R.J., Wolosiuk, R.A. High level expression in Escherichia coli, purification and properties of chloroplast fructose-1,6-bisphosphatase from rapeseed (Brassica napus) leaves. Photosynth Res. 1995;46(1-2):313-322.
http://dx.doi.org/10.1007/BF00020446