Artículo

Portal, P.; Villamil, S.F.; Alonso, G.D.; De Vas, M.G.; Flawiá, M.M.; Torres, H.N.; Paveto, C. "Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi. Suggested role on drug resistance" (2008) Molecular and Biochemical Parasitology. 160(1):42-51
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cytochrome P450 hemoproteins (CYPs) are involved in the synthesis of endogenous compounds such as steroids, fatty acids and prostaglandins as well as in the activation and detoxification of foreign compounds including therapeutic drugs. Cytochrome P450 reductase (CPR, E.C.1.6.2.4) transfers electrons from NADPH to a number of hemoproteins such as CYPs, cytochrome c, cytochrome b5, and heme oxygenase. This work presents the complete sequences of three non-allelic CPR genes from Trypanosoma cruzi. The encoded proteins named TcCPR-A, TcCPR-B and TcCPR-C have calculated molecular masses of 68.6 kDa, 78.4 kDa and 71.3 kDa, respectively. Deduced amino acid sequences share 11% amino acid identity, possess the conserved binding domains for FMN, FAD and NADPH and differ in the hydrophobic 27-amino acid residues of the N-terminal extension, which is absent in TcCPR-A. Every T. cruzi CPRs, TcCPR-A, TcCPR-B and TcCPR-C, were cloned and expressed in Escherichia coli. All of the recombinant enzymes reduced cytochrome c in a NADPH absolutely dependent manner with low Km values for this cofactor. They all were also strongly inhibited by diphenyleneiodonium, a classical flavoenzyme inhibitor. In addition, TcCPRs could support CYP activities when assayed in reconstituted systems containing rat liver microsomes. Polyclonal antiserum rose against the recombinant enzymes TcCPR-A and TcCPR-B demonstrated its presence in every T. cruzi developmental stages, with a remarkable expression of TcCPR-A in cell-cultured trypomastigotes. Overexpression of TcCPR-B in T. cruzi epimastigotes increased its resistance to the typical chemotherapeutic agents Nifurtimox and Benznidazole. We suggest a participation of TcCPR-B in the detoxification metabolism of the parasite. © 2008 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi. Suggested role on drug resistance
Autor:Portal, P.; Villamil, S.F.; Alonso, G.D.; De Vas, M.G.; Flawiá, M.M.; Torres, H.N.; Paveto, C.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Fisiología, Biología Molecular y Celular, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Palabras clave:Cytochrome P450 reductase; Drug resistance; Trypanosoma cruzi; amino acid; benznidazole; cytochrome c; cytochrome P450; diphenyliodonium salt; flavine adenine nucleotide; flavine mononucleotide; nifurtimox; polyclonal antiserum; protein; recombinant enzyme; reduced nicotinamide adenine dinucleotide phosphate; reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase; amino acid sequence; amino terminal sequence; antibiotic resistance; article; cell culture; clone; developmental stage; epimastigote; Escherichia coli; gene sequence; microsome; molecular weight; nonhuman; nucleotide sequence; priority journal; Trypanosoma cruzi; Amino Acid Sequence; Animals; DNA, Protozoan; Drug Resistance; Escherichia coli; Microsomes, Liver; Molecular Sequence Data; NADPH-Ferrihemoprotein Reductase; Rats; Recombinant Proteins; Transfection; Trypanosoma cruzi; Escherichia coli; Rattus; Trypanosoma cruzi
Año:2008
Volumen:160
Número:1
Página de inicio:42
Página de fin:51
DOI: http://dx.doi.org/10.1016/j.molbiopara.2008.03.007
Título revista:Molecular and Biochemical Parasitology
Título revista abreviado:Mol. Biochem. Parasitol.
ISSN:01666851
CODEN:MBIPD
CAS:amino acid, 65072-01-7; benznidazole, 22994-85-0; cytochrome c, 9007-43-6, 9064-84-0; cytochrome P450, 9035-51-2; diphenyliodonium salt, 1483-72-3, 1483-73-4; flavine adenine nucleotide, 146-14-5; flavine mononucleotide, 130-40-5, 146-17-8; nifurtimox, 23256-30-6; protein, 67254-75-5; reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase, 9023-03-4; reduced nicotinamide adenine dinucleotide phosphate, 53-57-6; DNA, Protozoan; NADPH-Ferrihemoprotein Reductase, EC 1.6.2.4; Recombinant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01666851_v160_n1_p42_Portal

Referencias:

  • Gibson, G.S.P., (2001) Introduction to Drug Metabolism, , Bath, UK
  • Murataliev, M.B., Feyereisen, R., Walker, F.A., Electron transfer by diflavin reductases (2004) Biochim Biophys Acta, 1698, pp. 1-26
  • Ostrowski, J., Barber, M.J., Rueger, D.C., Miller, B.E., Siegel, L.M., Kredich, N.M., Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase (1989) J Biol Chem, 264, pp. 15796-15808
  • Iyanagi, T., Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain (2005) Biochem Biophys Res Commun, 338, pp. 520-528
  • Masters, B.S., The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases (2005) Biochem Biophys Res Commun, 338, pp. 507-519
  • Nelson, D.R., Koymans, L., Kamataki, T., P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature (1996) Pharmacogenetics, 6, pp. 1-42
  • Guengerich, F.P., Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity (1994) Toxicol Lett, 70, pp. 133-138
  • Cheng, J., Wan, D.F., Gu, J.R., Establishment of a yeast system that stably expresses human cytochrome P450 reductase: application for the study of drug metabolism of cytochrome P450s in vitro (2006) Protein Expr Purif, 47, pp. 467-476
  • Louerat-Oriou, B., Perret, A., Pompon, D., Differential redox and electron-transfer properties of purified yeast, plant and human NADPH-cytochrome P-450 reductases highly modulate cytochrome P-450 activities (1998) Eur J Biochem, 258, pp. 1040-1049
  • Koopmann, E., Hahlbrock, K., Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley (1997) Proc Natl Acad Sci USA, 94, pp. 14954-14959
  • Ro, D.K., Ehlting, J., Douglas, C.J., Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar (2002) Plant Physiol, 130, pp. 1837-1851
  • Porter, T.D., Beck, T.W., Kasper, C.B., NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein (1990) Biochemistry, 29, pp. 9814-9818
  • Paine, M.J., Garner, A.P., Powell, D., Cloning and characterization of a novel human dual flavin reductase (2000) J Biol Chem, 275, pp. 1471-1478
  • Kwasnicka-Crawford, D.A., Vincent, S.R., Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity (2005) Biochem Biophys Res Commun, 336, pp. 565-571
  • Agosin, M., Naquira, C., Paulin, J., Capdevila, J., Cytochrome P-450 and drug metabolism in Trypanosoma cruzi: effects of phenobarbital (1976) Science, 194, pp. 195-197
  • Kuwahara, T., White Jr., R.A., Agosin, M., A cytosolic FAD-containing enzyme catalyzing cytochrome c reduction in Trypanosoma cruzi. I. Purification and some properties (1985) Arch Biochem Biophys, 239, pp. 18-28
  • Berger, B.J., Fairlamb, A.H., Cytochrome P450 in trypanosomatids (1993) Biochem Pharmacol, 46, pp. 149-157
  • Lepesheva, G.I., Zaitseva, N.G., Nes, W.D., CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B' helix defines substrate preferences of sterol 14alpha-demethylase (2006) J Biol Chem, 281, pp. 3577-3585
  • Buckner, F.S., Joubert, B.M., Boyle, S.M., Eastman, R.T., Verlinde, C.L., Matsuda, S.P., Cloning and analysis of Trypanosoma cruzi lanosterol 14alpha-demethylase (2003) Mol Biochem Parasitol, 132, pp. 75-81
  • Braga, M.V., Urbina, J.A., de Souza, W., Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi (2004) Int J Antimicrob Agents, 24, pp. 72-78
  • Garzoni, L.R., Caldera, A., Meirelles Mde, N., Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi (2004) Int J Antimicrob Agents, 23, pp. 273-285
  • Hankins, E.G., Gillespie, J.R., Aikenhead, K., Buckner, F.S., Upregulation of sterol C14-demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors (2005) Mol Biochem Parasitol, 144, pp. 68-75
  • Docampo, R., Sensitivity of parasites to free radical damage by antiparasitic drugs (1990) Chem Biol Interact, 73, pp. 1-27
  • Igoillo-Esteve, M., Cazzulo, J.J., The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: its role in the defense of the parasite against oxidative stress (2006) Mol Biochem Parasitol, 149, pp. 170-181
  • Pereira, C.A., Alonso, G.D., Paveto, M.C., Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites (2000) J Biol Chem, 275, pp. 1495-1501
  • Lorenzi, H.A., Vazquez, M.P., Levin, M.J., Integration of expression vectors into the ribosomal locus of Trypanosoma cruzi (2003) Gene, 310, pp. 91-99
  • Previato, J.O., Sola-Penna, M., Agrellos, O.A., Biosynthesis of O-N-acetylglucosamine-linked glycans in Trypanosoma cruzi Characterization of the novel uridine diphospho-N-acetylglucosamine:polypeptide. N-acetylglucosaminyltransferase-catalyzing formation of N-acetylglucosamine alpha1-->O-threonine (1998) J Biol Chem, 273, pp. 14982-14988
  • Kuwahara, T., White Jr., R.A., Agosin, M., A cytosolic flavin-containing enzyme catalyzing reduction of cytochrome c in Trypanosoma cruzi: kinetic studies with cytochrome c as substrate (1985) Arch Biochem Biophys, 241, pp. 45-49
  • Dubin, M., Fernandez Villamil, S.H., Stoppani, A.O., Inhibition of microsomal lipid peroxidation and cytochrome P-450-catalyzed reactions by beta-lapachone and related naphthoquinones (1990) Biochem Pharmacol, 39, pp. 1151-1160
  • Mazel, P., Experiments illustrating drug metabolism in vitro (1971) Fundamentals of drug metabolism and drug disposition, pp. 546-556. , LaDu B.N., Mandel H., and Way E. (Eds), William and Wilkins, Baltimore
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Michels, P.A., Marchand, M., Kohl, L., Allert, S., Wierenga, R.K., Opperdoes, F.R., The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship (1991) Eur J Biochem, 198, pp. 421-428
  • Keyes, S.R., Fracasso, P.M., Heimbrook, D.C., Rockwell, S., Sligar, S.G., Sartorelli, A.C., Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1 (1984) Cancer Res, 44, pp. 5638-5643
  • Shen, A.L., Kasper, C.B., Role of acidic residues in the interaction of NADPH-cytochrome P450 oxidoreductase with cytochrome P450 and cytochrome c (1995) J Biol Chem, 270, pp. 27475-27480
  • Durst, F., Nelson, D.R., Diversity and evolution of plant P450 and P450-reductases (1995) Drug Metabol Drug Interact, 12, pp. 189-206
  • Fuziwara, S., Sagami, I., Rozhkova, E., Catalytically functional flavocytochrome c himeras of P450 BM3 and nitric oxide synthase (2002) J Inorg Biochem, 91, pp. 515-526
  • Walton, M.I., Wolf, C.R., Workman, P., The role of cytochrome P450 and cytochrome P450 reductase in the reductive bioactivation of the novel benzotriazine di-N-oxide hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1 4-dioxide (SR 4233, WIN 59075) by mouse liver (1992) Biochem Pharmacol, 44, pp. 251-259
  • Wilkinson, S.R., Kelly, J.M., The role of glutathione peroxidases in trypanosomatids (2003) Biol Chem, 384, pp. 517-525
  • Maya, J.D., Repetto, Y., Agosin, M., Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi (1997) Mol Biochem Parasitol, 86, pp. 101-106
  • Murta, S.M., Krieger, M.A., Montenegro, L.R., Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi (2006) Mol Biochem Parasitol, 146, pp. 151-162
  • Buckner, F.S., Wilson, A.J., White, T.C., Van Voorhis, W.C., Induction of resistance to azole drugs in Trypanosoma cruzi (1998) Antimicrob Agents Chemother, 42, pp. 3245-3250
  • Biagiotti, E., Ferri, P., Dringen, R., Del Grande, P., Ninfali, P., Glucose-6-phosphate dehydrogenase and NADPH-consuming enzymes in the rat olfactory bulb (2005) J Neurosci Res, 80, pp. 434-441

Citas:

---------- APA ----------
Portal, P., Villamil, S.F., Alonso, G.D., De Vas, M.G., Flawiá, M.M., Torres, H.N. & Paveto, C. (2008) . Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi. Suggested role on drug resistance. Molecular and Biochemical Parasitology, 160(1), 42-51.
http://dx.doi.org/10.1016/j.molbiopara.2008.03.007
---------- CHICAGO ----------
Portal, P., Villamil, S.F., Alonso, G.D., De Vas, M.G., Flawiá, M.M., Torres, H.N., et al. "Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi. Suggested role on drug resistance" . Molecular and Biochemical Parasitology 160, no. 1 (2008) : 42-51.
http://dx.doi.org/10.1016/j.molbiopara.2008.03.007
---------- MLA ----------
Portal, P., Villamil, S.F., Alonso, G.D., De Vas, M.G., Flawiá, M.M., Torres, H.N., et al. "Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi. Suggested role on drug resistance" . Molecular and Biochemical Parasitology, vol. 160, no. 1, 2008, pp. 42-51.
http://dx.doi.org/10.1016/j.molbiopara.2008.03.007
---------- VANCOUVER ----------
Portal, P., Villamil, S.F., Alonso, G.D., De Vas, M.G., Flawiá, M.M., Torres, H.N., et al. Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi. Suggested role on drug resistance. Mol. Biochem. Parasitol. 2008;160(1):42-51.
http://dx.doi.org/10.1016/j.molbiopara.2008.03.007