Artículo

Bringaud, F.; Ghedin, E.; Blandin, G.; Bartholomeu, D.C.; Caler, E.; Levin, M.J.; Baltz, T.; El-Sayed, N.M. "Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements" (2006) Molecular and Biochemical Parasitology. 145(2):158-170
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ingi and L1Tc non-LTR retrotransposons - which constitute the ingi clade - are abundant in the genome of the trypanosomatid species Trypanosoma brucei and Trypanosoma cruzi, respectively. The corresponding retroelements, however, are not present in the genome of a closely related trypanosomatid, Leishmania major. To study the evolution of non-LTR retrotransposons in trypanosomatids, we have analyzed all ingi/L1Tc elements and highly degenerate ingi/L1Tc-related sequences identified in the recently completed T. brucei, T. cruzi and L. major genomes. The coding sequences of 242 degenerate ingi/L1Tc-related elements (DIREs) in all three genomes were reconstituted by removing the numerous frame shifts. Three independent phylogenetic analyses conducted on the conserved domains encoded by these elements show that all DIREs, including the 52 L. major DIREs, form a monophyletic group belonging to the ingi clade. This indicates that the trypanosomatid ancestor contained active mobile elements that have been retained in the Trypanosoma species, but were lost from L. major genome, where only remnants (DIRE) are detectable. All 242 DIREs analyzed group together according to their species origin with the exception of 11 T. cruzi DIREs which are close to the T. brucei ingi/DIRE families. Considering the absence of known horizontal transfer between the African T. brucei and the South-American T. cruzi, this suggests that this group of elements evolved at a lower rate when compared to the other trypanosomatid elements. Interestingly, the only nucleotide sequence conserved between ingi and L1Tc (the first 79 residues) is also present at the 5′-extremity of all the full length DIREs and suggests a possible role for this conserved motif, as well as for DIREs. © 2005 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements
Autor:Bringaud, F.; Ghedin, E.; Blandin, G.; Bartholomeu, D.C.; Caler, E.; Levin, M.J.; Baltz, T.; El-Sayed, N.M.
Filiación:Laboratoire de Génomique Fonctionnelle des Trypanosomatides, Université Victor Segalen Bordeaux 2, UMR-5162 CNRS, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, United States
Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC 20052, United States
Laboratorio de Biologia Molecular de la Enfermedad de Chagas, DBMCF-School of Sciences, University of Buenos Aires, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Palabras clave:Degenerate retroelement; Evolution; Ingi; L1Tc; Leishmania major; Non-LTR retrotransposon; Retroposon; Trypanosoma brucei; Trypanosoma cruzi; article; controlled study; genome; Leishmania major; molecular evolution; nonhuman; nucleotide sequence; phylogeny; priority journal; retroposon; Trypanosoma brucei; Trypanosoma cruzi; Leishmania major; Trypanosoma; Trypanosoma brucei; Trypanosoma cruzi; Trypanosomatidae
Año:2006
Volumen:145
Número:2
Página de inicio:158
Página de fin:170
DOI: http://dx.doi.org/10.1016/j.molbiopara.2005.09.017
Título revista:Molecular and Biochemical Parasitology
Título revista abreviado:Mol. Biochem. Parasitol.
ISSN:01666851
CODEN:MBIPD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01666851_v145_n2_p158_Bringaud

Referencias:

  • Capy, P., Bazin, C., Higuet, D., Langin, T., (1998) Dynamics and Evolution of Transposable Elements, , Landes Bioscience Austin, Tex
  • Whitcomb, J.M., Hughes, S.H., Retroviral reverse transcription and integration: Progress and problems (1992) Annu Rev Cell Biol, 8, pp. 275-306
  • Luan, D.D., Korman, M.H., Jakubczak, J.L., Eickbush, T.H., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition (1993) Cell, 72, pp. 595-605
  • Eickbush, T.H., Malik, H.S., (2002) Mobile DNA II, pp. 1111-1144. , A.G. Craig R. Craigie M. Gellert A.M. Lambowitz ASM Press Washington, DC
  • Kazazian Jr., H.H., Mobile elements: Drivers of genome evolution (2004) Science, 303, pp. 1626-1632
  • Katinka, M.D., Duprat, S., Cornillot, E., Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi (2001) Nature, 414, pp. 450-453
  • Gardner, M.J., Hall, N., Fung, E., Genome sequence of the human malaria parasite Plasmodium falciparum (2002) Nature, 419, pp. 498-511
  • Carlton, J.M., Angiuoli, S.V., Suh, B.B., Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii (2002) Nature, 419, pp. 512-519
  • Xu, P., Widmer, G., Wang, Y., The genome of Cryptosporidium hominis (2004) Nature, 431, pp. 1107-1112
  • Abrahamsen, M.S., Templeton, T.J., Enomoto, S., Complete genome sequence of the apicomplexan Cryptosporidium parvum (2004) Science, 304, pp. 441-445
  • Berriman, M., Ghedin, E., Hertz-Fowler, C., The genome of the African trypanosome Trypanosoma brucei (2005) Science, 309, pp. 416-422
  • El-Sayed, N.M., Myler, P.J., Bartholomeu, D.C., The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease (2005) Science, 309, pp. 409-415
  • Ivens, A.C., Peacock, C.S., Worthey, E.A., The genome of the kinetoplastid parasite Leishmania major (2005) Science, 309, pp. 436-442
  • Lukes, J., Jirku, M., Dolezel, D., Kral'Ova, I., Hollar, L., Maslov, D.A., Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic (1997) J Mol Evol, 44, pp. 521-527
  • Haag, J., O'Huigin, C., Overath, P., The molecular phylogeny of trypanosomes: Evidence for an early divergence of the Salivaria (1998) Mol Biochem Parasitol, 91, pp. 37-49
  • Stevens, J., Rambaut, A., Evolutionary rate differences in trypanosomes (2001) Infect Genet Evol, 1, pp. 143-150
  • Bhattacharya, S., Bakre, A., Bhattacharya, A., Mobile genetic elements in protozoan parasites (2002) J Genet, 81, pp. 73-86
  • Wickstead, B., Ersfeld, K., Gull, K., Repetitive elements in genomes of parasitic protozoa (2003) Microbiol Mol Biol Rev, 67, pp. 360-375
  • Vazquez, M., Ben-Dov, C., Lorenzi, H., Moore, T., Schijman, A., Levin, M.J., The short interspersed repetitive element of Trypanosoma cruzi, SIRE, is part of VIPER, an unusual retroelement related to long terminal repeat retrotransposons (2000) Proc Natl Acad Sci USA, 97, pp. 2128-2133
  • Aksoy, S., Lalor, T.M., Martin, J., Van Der Ploeg, L.H., Richards, F.F., Multiple copies of a retroposon interrupt spliced leader RNA genes in the African trypanosome Trypanosoma gambiense (1987) EMBO J, 6, pp. 3819-3826
  • Gabriel, A., Yen, T.J., Schwartz, D.C., A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata (1990) Mol Cell Biol, 10, pp. 615-624
  • Villanueva, M.S., Williams, S.P., Beard, C.B., Richards, F.F., Aksoy, S., A new member of a family of site-specific retrotransposons is present in the spliced leader RNA genes of Trypanosoma cruzi (1991) Mol Cell Biol, 11, pp. 6139-6148
  • Teng, S.C., Wang, S.X., Gabriel, A., A new non-LTR retrotransposon provides evidence for multiple distinct site-specific elements in Crithidia fasciculata miniexon arrays (1995) Nucleic Acids Res, 23, pp. 2929-2936
  • Kimmel, B.E., Ole-Moiyoi, O.K., Young, J.R., Ingi: A 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs (1987) Mol Cell Biol, 7, pp. 1465-1475
  • Murphy, N.B., Pays, A., Tebabi, P., Trypanosoma brucei repeated element with unusual structural and transcriptional properties (1987) J Mol Biol, 195, pp. 855-871
  • Martin, F., Maranon, C., Olivares, M., Alonso, C., Lopez, M.C., Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: Homology of the first ORF with the ape family of DNA repair enzymes (1995) J Mol Biol, 247, pp. 49-59
  • Bringaud, F., Biteau, N., Zuiderwijk, E., The ingi and RIME non-LTR retrotransposons are not randomly distributed in the genome of Trypanosoma brucei (2004) Mol Biol Evol, 21, pp. 520-528
  • Garcia-Salcedo, J.A., Gijon, P., Amiguet-Vercher, A., Pays, E., Searching for promoter activity in RIME/Ingi retrotransposons from Trypanosoma brucei: Binding of a nuclear protein to their 5′ extremity (2003) Exp Parasitol, 104, pp. 140-148
  • Olivares, M., Garcia-Perez, J.L., Thomas, M.C., Heras, S.R., Lopez, M.C., The non-LTR (long terminal repeat) retrotransposon L1Tc from Trypanosoma cruzi codes for a protein with RNase H activity (2002) J Biol Chem, 277, pp. 28025-28030
  • Pays, E., Murphy, N.B., DNA-binding fingers encoded by a trypanosome retroposon (1987) J Mol Biol, 197, pp. 147-148
  • Olivares, M., Alonso, C., Lopez, M.C., The open reading frame 1 of the L1Tc retrotransposon of Trypanosoma cruzi codes for a protein with apurinic-apyrimidinic nuclease activity (1997) J Biol Chem, 272, pp. 25224-25228
  • Ghedin, E., Bringaud, F., Peterson, J., Gene synteny and evolution of genome architecture in trypanosomatids (2004) Mol Biochem Parasitol, 134, pp. 183-191
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res, 25, pp. 4876-4882
  • Malik, H.S., Burke, W.D., Eickbush, T.H., The age and evolution of non-LTR retrotransposable elements (1999) Mol Biol Evol, 16, pp. 793-805
  • Xiong, Y., Eickbush, T.H., Origin and evolution of retroelements based upon their reverse transcriptase sequences (1990) EMBO J, 9, pp. 3353-3362
  • Bringaud, F., García-Pérez, J.L., Heras, S.R., Identification of non-autonomous non-LTR retrotransposons in the genome of Trypanosoma cruzi (2002) Mol Biochem Parasitol, 124, pp. 73-78
  • Hasan, G., Turner, M.J., Cordingley, J.S., Complete nucleotide sequence of an unusual mobile element from Trypanosoma brucei (1984) Cell, 37, pp. 333-341
  • Dewannieux, M., Esnault, C., Heidmann, T., LINE-mediated retrotransposition of marked Alu sequences (2003) Nat Genet, 35, pp. 41-48
  • Affolter, M., Rindisbacher, L., Braun, R., The tubulin gene cluster of Trypanosoma brucei starts with an intact beta-gene and ends with a truncated beta-gene interrupted by a retrotransposon-like sequence (1989) Gene, 80, pp. 177-183
  • Hall, N., Berriman, M., Lennard, N.J., The DNA sequence of chromosome I of an African trypanosome: Gene content, chromosome organisation, recombination and polymorphism (2003) Nucleic Acids Res, 31, pp. 4864-4873
  • Braun, R., Behrens, K., Glauser, A., Brun, R., Evolution of the retrotransposons TRS/ingi and of the tubulin genes in trypanosomes (1992) Acta Trop, 52, pp. 175-187
  • Smit, A.F., Interspersed repeats and other mementos of transposable elements in mammalian genomes (1999) Curr Opin Genet Dev, 9, pp. 657-663
  • Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921
  • Maslov, D.A., Simpson, L., Evolution of parasitism in kinetoplastid protozoa (1995) Parasitol Today, 11, pp. 30-32
  • Doolittle, R.F., Feng, D.F., Johnson, M.S., McClure, M.A., Origins and evolutionary relationships of retroviruses (1989) Q Rev Biol, 64, pp. 1-30
  • Obado, S.O., Taylor, M.C., Wilkinson, S.R., Bromley, E.V., Kelly, J.M., Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional "strand- switch" domain as a major feature (2005) Genome Res, 15, pp. 36-43
  • Olivares, M., Lopez, M.C., Garcia-Perez, J.L., Briones, P., Pulgar, M., Thomas, M.C., The endonuclease NL1Tc encoded by the LINE L1Tc from Trypanosoma cruzi protects parasites from daunorubicin DNA damage (2003) Biochim Biophys Acta, 1626, pp. 25-32
  • Mizrokhi, L.J., Georgieva, S.G., Ilyin, Y.V., Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II (1988) Cell, 54, pp. 685-691
  • Swergold, G.D., Identification, characterization, and cell specificity of a human LINE-1 promoter (1990) Mol Cell Biol, 10, pp. 6718-6729
  • McLean, C., Bucheton, A., Finnegan, D.J., The 5′ untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression (1993) Mol Cell Biol, 13, pp. 1042-1050
  • Contursi, C., Minchiotti, G., Di Nocera, P.P., Identification of sequences which regulate the expression of Drosophila melanogaster Doc elements (1995) J Biol Chem, 270, pp. 26570-26576
  • Liang, X.H., Haritan, A., Uliel, S., Michaeli, S., Trans and cis splicing in trypanosomatids: Mechanism, factors, and regulation (2003) Eukaryot Cell, 2, pp. 830-840
  • Vassella, E., Roditi, I., Braun, R., Heterogeneous transcripts of RIME/ingi retroposons in Trypanosoma brucei are unspliced (1996) Mol Biochem Parasitol, 82, pp. 131-135
  • Boeke, J.D., The unusual phylogenetic distribution of retrotransposons: A hypothesis (2003) Genome Res, 13, pp. 1975-1983
  • Esnault, C., Maestre, J., Heidmann, T., Human LINE retrotransposons generate processed pseudogenes (2000) Nat Genet, 24, pp. 363-367
  • Wei, W., Gilbert, N., Ooi, S.L., Human L1 retrotransposition: Cis preference versus trans complementation (2001) Mol Cell Biol, 21, pp. 1429-1439
  • Kajikawa, M., Okada, N., LINEs mobilize SINEs in the eel through a shared 3′ sequence (2002) Cell, 111, pp. 433-444
  • Lacount, D.J., El-Sayed, N.M., Kaul, S., Wanless, D., Turner, C.M., Donelson, J.E., Analysis of a donor gene region for a variant surface glycoprotein and its expression site in African trypanosomes (2001) Nucleic Acids Res, 29, pp. 2012-2019
  • Olivares, M., Thomas, M.C., Lopez-Barajas, A., Genomic clustering of the Trypanosoma cruzi nonlong terminal L1Tc retrotransposon with defined interspersed repeated DNA elements (2000) Electrophoresis, 21, pp. 2973-2982
  • Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415

Citas:

---------- APA ----------
Bringaud, F., Ghedin, E., Blandin, G., Bartholomeu, D.C., Caler, E., Levin, M.J., Baltz, T.,..., El-Sayed, N.M. (2006) . Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Molecular and Biochemical Parasitology, 145(2), 158-170.
http://dx.doi.org/10.1016/j.molbiopara.2005.09.017
---------- CHICAGO ----------
Bringaud, F., Ghedin, E., Blandin, G., Bartholomeu, D.C., Caler, E., Levin, M.J., et al. "Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements" . Molecular and Biochemical Parasitology 145, no. 2 (2006) : 158-170.
http://dx.doi.org/10.1016/j.molbiopara.2005.09.017
---------- MLA ----------
Bringaud, F., Ghedin, E., Blandin, G., Bartholomeu, D.C., Caler, E., Levin, M.J., et al. "Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements" . Molecular and Biochemical Parasitology, vol. 145, no. 2, 2006, pp. 158-170.
http://dx.doi.org/10.1016/j.molbiopara.2005.09.017
---------- VANCOUVER ----------
Bringaud, F., Ghedin, E., Blandin, G., Bartholomeu, D.C., Caler, E., Levin, M.J., et al. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Mol. Biochem. Parasitol. 2006;145(2):158-170.
http://dx.doi.org/10.1016/j.molbiopara.2005.09.017