Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48 h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48 h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14 days in the digestive gland and after 21 days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
Autor:Otero, S.; Kristoff, G.
Filiación:Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428, Buenos Aires, Argentina
Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Azinphos-methyl; B-esterases; Biomarkers; Freshwater invertebrates; 1 naphthyl acetate; 2 naphthyl acetate; 4 nitrophenyl acetate; 4 nitrophenyl butyrate; acetic acid derivative; acetylthiocholine; azinphos methyl; butyric acid derivative; butyrylthiocholine; carboxylesterase; choline derivative; cholinesterase; naphthalene derivative; physostigmine; propionylthiocholine; unclassified drug; 4-nitrophenyl acetate; 4-nitrophenyl butyrate; azinphos methyl; biological marker; carboxylesterase; cholinesterase; insecticide; nitrophenol; organophosphorus compound; water pollutant; biomarker; enzyme activity; freshwater ecosystem; inhibition; insecticide; invertebrate; organophosphorus pesticide; pest control; substrate; animal experiment; animal tissue; Article; controlled study; ecotoxicology; environmental exposure; enzyme activity; enzyme analysis; enzyme inhibition; enzyme kinetics; enzyme substrate complex; exocrine gland; foot; freshwater species; gastropod; gonad; head; in vitro study; in vivo study; lung; nonhuman; Planorbarius corneus; priority journal; sensitivity analysis; soft tissue; tissue specificity; water contamination; animal; antagonists and inhibitors; chemistry; drug effects; enzyme specificity; enzymology; IC50; kinetics; metabolism; snail; toxicity; water pollutant; Gastropoda; Invertebrata; Planorbarius corneus; Vertebrata; Animals; Azinphosmethyl; Biomarkers; Butyrates; Carboxylic Ester Hydrolases; Cholinesterases; Inhibitory Concentration 50; Insecticides; Kinetics; Nitrophenols; Organophosphorus Compounds; Snails; Substrate Specificity; Water Pollutants, Chemical
Año:2016
Volumen:180
Página de inicio:186
Página de fin:195
DOI: http://dx.doi.org/10.1016/j.aquatox.2016.10.002
Título revista:Aquatic Toxicology
Título revista abreviado:Aquat. Toxicol.
ISSN:0166445X
CODEN:AQTOD
CAS:1 naphthyl acetate, 830-81-9; acetylthiocholine, 1797-69-9, 4468-05-7; azinphos methyl, 86-50-0; butyrylthiocholine, 1866-16-6, 4555-00-4; carboxylesterase, 59536-71-9, 83380-83-0, 9016-18-6, 9028-01-7; cholinesterase, 9001-08-5; physostigmine, 57-47-6, 64-47-1; nitrophenol, 25154-55-6; 4-nitrophenyl acetate; 4-nitrophenyl butyrate; Azinphosmethyl; Biomarkers; Butyrates; Carboxylic Ester Hydrolases; Cholinesterases; Insecticides; Nitrophenols; Organophosphorus Compounds; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166445X_v180_n_p186_Otero

Referencias:

  • Agrelo, M., Kristoff, G., Efectos de las concentraciones ambientales del pesticida metilazinfos sobre la reproducción y descendencia de una población de gasterópodos de agua dulce (2012) Revista da XX Jovens Pesquisadores da AUGM, pp. 416-422
  • Agrelo, Alteraciones en la reproducción y en la actividad de B-esterasas de Planorbarius corneus expuestos a metilazinfos. Análisis de malformaciones, reproducción, crecimiento y supervivencia de su descendencia. Tesis de Licenciatura en Ciencias Biológicas (2012), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina; Aldridge, W.N., Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate propionate and butyrate, and a method for their determination (1953) Biochem. J., 53, pp. 110-117
  • Anguiano, O.L., Castro, C., Venturino, A., Ferrari, A., Acute toxicity and biochemical effects of azinphos methyl in the amphipod Hyalella curvispina (2014) Environ. Toxicol., 29, pp. 1043-1053
  • Arufe, M.I., Arellano, J.M., García, L., Albendín, G., Sarasquete, C., Cholinesterase activity in gilthead seabream (Sparus aurata) larvae: characterization and sensitivity to the organophosphate azinphosmethyl (2007) Aquat. Toxicol., 84, pp. 328-336
  • Barata, C., Solayan, A., Porte, C., Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphia magna (2004) Aquat. Toxicol., 66, pp. 125-139
  • Benstead, R.S., Baynes, A., Casey, D., Routledge, E.J., Jobling, S., 17 β-Oestradiol may prolong reproduction in seasonally breeding freshwater gastropod molluscs (2011) Aquat. Toxicol., 101, pp. 326-334
  • Bianco, K., Yusseppone, M.S., Otero, S., Luquet, C., Ríos de Molina, M.C., Kristoff, G., Cholinesterases and neurotoxicity as highly sensitive biomarkers for an organophosphate insecticide in a freshwater gastropod (Chilina gibbosa) with low sensitivity carboxylesterases (2013) Aquat. Toxicol., 144-145, pp. 26-35
  • Bianco, K., Otero, S., Oliver, A.B., Nahabedian, D., Kristoff, G., Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea (2014) Ecotoxicol. Environ. Saf., 109, pp. 85-92
  • Bonacci, S., Corsi, I., Focardi, S., Cholinesterases in the Antartic scallop Adamussium colbecki: Characterization and sensitivity to pollutants (2009) Ecotoxicol. Environ. Saf., 72, pp. 1481-1488
  • Brown, M., Davies, I.M., Moffat, C.F., Redshaw, J., Craft, J.A., Characterisation of choline esterases and their tissue and subcellular distribution in mussel (Mytilus edulis) (2004) Mar. Environ. Res., 57, pp. 155-169
  • Cacciatore, L.C., Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C., Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus (2012) Chemosphere, 44, pp. 450-458
  • Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A., Cholinesterase and carboxylesterase inhibition in Planorbarius corneus exposed to binary mixtures of azinphos-methyl and chlorpyrifos (2013) Aquat. Toxicol., 128-129, pp. 124-134
  • Cacciatore, L.C., Investigación de procesos toxicocinéticos del pesticida metil azinfos en dos especies de invertebrados acuáticos. Tesis de Maestría en Ciencias Ambientales (2009), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina; Clarke, N., Routledge, E.J., Garner, A., Casey, D., Benstead, R., Walker, D., Watermann, B., Jobling, S., Exposure to treated sewage effluent disrupts reproduction and development in the seasonally breeding ramshorn snail (Subclass: pulmonata, Planorbarius corneus) (2009) Environ. Sci. Technol., 43, pp. 2092-2098
  • Cossi, P., Boburg, F., Luquet, B., Kristoff, C., Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl (2015) Aquat. Toxicol., 167, pp. 248-256
  • Depledge, M.H., The role of biomarkers in environmental assessment (2). invertebrates. In M. C. fossi (Ed) (1994) Ecotoxicology, 3, pp. 161-172
  • Desneux, N., Decourtye, A., Delpuech, J.M., The sublethal effects of pesticides on beneficial arthropods (2007) Annu. Rev. Entomol., 52, pp. 81-106
  • Dorandeu, F., Foquin, A., Briot, R., Delacour, C., Denis, J., Alonso, A., Froment, M.T., Masson, P., An unexpected plasma cholinesterase activity rebound after challenge with a high dose of the nerve agent VX (2008) Toxicology, 248, pp. 151-157
  • Duysen, E.G., Lockridge, O., Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons (2011) Toxicol. Appl. Pharmacol., 255 (2), pp. 214-220
  • Ellman, G.L., Courtney, K.D., Andres V.Jr. Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Ferrari, A., Venturino, A., Pechen de D́ Angelo, A.M., Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphos methyl, parathion and carbaryl exposure in the goldfish (Carassius auratus) (2004) Ecotoxicol. Environ. Saf., 57, pp. 420-425
  • Ferrari, A., Anguiano, O.L., Soleno, J., Venturino, A., Pechen de D́ Angelo, A.M., Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl (2004) Comput. Biochem. Physiol. C, 139, pp. 239-243
  • Ferrari, A., Lascano, C., Pechén de D́Angelo, A.M., Venturino, A., Effects of azinphos methyl and carbaryl on Rhinella arenarum larvae esterases and antioxidant enzymes (2011) Comput. Biochem. Physiol. C, 153, pp. 34-39
  • Fried, B., Sundar Rao, K., Sherma, J., Fatty acid composition of Biomphalaria glabrata (Gastropoda: planorbidae) fed henśs egg yolk versus leaf lettuce (1992) Comp. Biochem. Physiol., 101 A, pp. 351-352
  • Fuentealba, C., Figueroa, R., Monroe, J.J., Endemism analysis of chilean freshwater mollusks (2010) Rev. Chil. Hist. Nat., 83, pp. 289-298
  • Fulton, M.H., Key, P.B., Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects (2001) Environ. Toxicol. Chem., 20 (1), pp. 37-45
  • González Vejares, S., Sabat, P., Sanchez-Hernandez, J.C., Tissue-specific inhibition and recovery of esterase activities in Lumbriculus terrestris experimentally ezposed to chlorpyrifos (2010) Comput. Biochem. Physiol. C, 151, pp. 351-359
  • Granovsky, A.V., Ma, L., Ricaud, R., Bengtson, R.L., Selim, H.M., Fate of azinphosmethyl in a sugarcane field: distributions in canopy, soil, and runoff (1996) J. Environ. Qual., 25, pp. 1210-1216
  • Habig, C., Di Giulio, R.T., Biochemical characteristics of cholinesterases in aquatic organisms (1991) Cholines-terase-Inhibiting Insecticides, pp. 20-30. , P. Mineau Their Impact on Wildlife and theEnvironment. Elsevier Amsterdam
  • Jopp, F., Comparative studies on the dispersal of the Great Ramshorn (Planorbarius corneus L.): A modelling approach (2006) Limnologica, 36, pp. 17-25
  • Klosterhaus, S.L., Di Pinto, L.M., Chandler, G.T., A comparative assessment of azinphosmethyl bioaccumulation and toxicity in two estuarine meiobenthic harpacticoid copepods (2003) Environ. Toxicol. Chem., 22, pp. 2960-2968
  • Kristoff, G., Verrengia Guerrero, N.R., Pechén de D'Angelo, A.M., Cochón, A.C., Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus (2006) Toxicology, 222, pp. 185-194
  • Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C., Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl (2010) Aquat. Toxicol., 96, pp. 115-123
  • Kristoff, G., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C., Effects of the organophosphate insecticide azinphos-methyl on the reproduction and cholinesterase activity of Biomphalaria glabrata (2011) Chemosphere, 84, pp. 585-591
  • Kristoff, G., Chiny Barrionuevo, D., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C., In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: analysis of enzyme, substrate and tissue dependence (2012) Aquat. Toxicol., 112-113, pp. 19-26
  • Laguerre, C., Sanchez-Hernandez, J.C., Köhler, H.R., Triebskorn, R., Capowiez, Y., Rault, M., Mazzia, C., B-type esterases in the snail Xeropicta derbentina: An enzymological analysis to evaluate their use as biomarkers of pesticide exposure (2009) Environ. Pollut., 157, pp. 199-207
  • Loewy, R.M., Kirs, V., Carvajal, G., Venturino, A., Pechén de D́Angelo, A.M., Effect of pesticide use in fruit production orchards on shallow ground water (2003) J. Environ. Sci. Health, 38 B, pp. 317-325
  • Loewy, R.M., Monza, L.B., Kiers, V.E., Savini, M.C., Pesticide distribution in an agricultural environment in Argentina (2011) J. Environ. Sci. Health B., 46, pp. 662-670
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Malagnoux, L., Capowiez, Y., Rault, M., Characterization of B-esterases and their inhibition responses to pesticides in the earwig Forficula auricularia (2014) Chemosphere, 112, pp. 456-464
  • Mikhailov, A.I., Torrado, M., Korochkin, L.I., Kopantzeva, M.A., Méndez, J., Male predominant carboxylesterase expression in the reproductive system of molluscs and insects: inmunochemical and biochemical similarity between Mytilus male associated polypeptide (MAP) and Drosophila sex-specific esterase S (1997) Comput. Biochem. Physiol., 118, pp. 197-208
  • Mora, P., Michel, X., Narbonne, J.-F., Cholinesterase activity as potencial biomarker in two bivalves (1999) Environ. Toxicol. Pharmacol., 7, pp. 253-260
  • Otludil, B., Cengiz, E.I., Yildirim, M.Z., Ünver, Ö., Ünlü, E., The effects of endosulfan on the great ramshorn snail Planorbarius corneus (Gastropoda, Pulmonata): a histopathological study (2004) Chemosphere, 56, pp. 707-716
  • Pavlica, M., Klobučar, G.I.V., Vetma, N., Erben, R., Papeš, D., Detection of micronuclei in haemocytes of zebra mussel and great ramshorn snail exposed to pentachlorophenol (2000) Mutat. Res., 465, pp. 145-150
  • Rivadeneira, P.R., Agrelo, M., Otero, S., Kristoff, G., Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod (2013) Ecotoxicol. Environ. Saf., 90, pp. 82-88
  • Rivadeneira, R., Agrelo, M., Kristoff, G., Acute Exposure of the Freshwater Gastropod Planorbarius Corneus to an Environmental Concentration of Chlorpyrifos. Recovery Studies of Enzyme Activities in Gonads and Effects on Reproduction in Chlorpyrifos: Toxicological Properties, Uses and Effects on Human Health and the Environment. Biochemistry Research Tronds (2015), Nova Publishers; Sanchez-Hernandez, J.C., Wheelock, C.E., Tissue distribution, isozyme abundance and sensitivity to chorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris (2009) Environ. Pollut., 157, pp. 264-272
  • Sanchez-Hernandez, J.C., Ecotoxicological perspectives of B-Esterases in the assessment of pesticide contamination (2007) Environmental Pollution: New Resarch, pp. 1-45. , R.H. Plattenberg Nova Science Publishers Inc. N. Y., USA
  • Schulz, R., Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review (2004) J. Environ. Qual., 33, pp. 419-448
  • Strong, E.E., Garcominy, O., Ponder, W.F., Bouchet, P., Global diversity of gastropods (Gastropoda; Mollusca) in freshwater (2008) Hydrobiolgía, 595, pp. 149-166
  • Timbrell, J.A., Principles of Biochemical Toxicology (2000), Taylor and Francis London; Tripathi, P.K., Singh, A., Carbaryl induced alterations in the reproduction and metabolism of the freshwater snail Lymnaea acuminata (2004) Pest. Biochem. Physiol., 79, pp. 1-9
  • Vioque-Fernández, A., Alves de Almeida, E., López-Barea, J., Esterases as pesticide biomarkers in crayfish (Procambarus clarkii Crustacea): Tissue distribution, sensitivity to model compounds and recovery from inactivation (2007) Comput. Biochem. Physiol., 145, pp. 404-412
  • Walker, C.H., Hopkin, S.P., Sibly, R.M., Peakall, D.B., Principles of Ecotoxicology (2001), Taylor and Francis London; Wan, M.T., Szeto, S.Y., Price, P., Distribution and persistence of azinphos-methyl and parathion in chemigated cranberry bogs (1995) J. Environ. Qual., 24, pp. 589-596
  • Wheelock, C.E., Shan, G., Ottea, J., Overview of carboxylesterases and their role in the metabolism of insecticides (2005) J. Pestic. Sci., 30, pp. 75-83
  • Wiese, V., Nonmarine mollusca of Schleswig-Holstein (northernmost Germany) (2005), http://www.mollbase.org/sh/, (February 2005). MOLLBASE-National Database of German Land-and Freswater-Mollusks.01.06.2005; van Asperen, K., A study of housefly esterases by means of a sensitive colorimetric method (1962) J. Ins. Physiol., 8, pp. 401-416
  • van der Oost, R., Beyer, J., Vermeulen, N.P.E., Fish bioaccumulation and biomarkers in environmental risk assessment: a review (2003) Environ. Toxicol. Pharmacol., 13, pp. 57-149

Citas:

---------- APA ----------
Otero, S. & Kristoff, G. (2016) . In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity. Aquatic Toxicology, 180, 186-195.
http://dx.doi.org/10.1016/j.aquatox.2016.10.002
---------- CHICAGO ----------
Otero, S., Kristoff, G. "In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity" . Aquatic Toxicology 180 (2016) : 186-195.
http://dx.doi.org/10.1016/j.aquatox.2016.10.002
---------- MLA ----------
Otero, S., Kristoff, G. "In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity" . Aquatic Toxicology, vol. 180, 2016, pp. 186-195.
http://dx.doi.org/10.1016/j.aquatox.2016.10.002
---------- VANCOUVER ----------
Otero, S., Kristoff, G. In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity. Aquat. Toxicol. 2016;180:186-195.
http://dx.doi.org/10.1016/j.aquatox.2016.10.002