Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Azinphos-methyl belongs to the class of organophosphate insecticides which are recognized for their anticholinesterase action. It is one of the most frequently used insecticides in the Upper Valley of Río Negro and Río Neuquén in Argentina, where agriculture represents the second most important economic activity. It has been detected in water from this North Patagonian region throughout the year and the maximum concentration found was 22.48μgL-1 during the application period. Chilina gibbosa is a freshwater gastropod widely distributed in South America, particularly in Patagonia, Argentina and in Southern Chile. Toxicological studies performed with C. gibbosa in our laboratory have reported neurotoxicity signs and cholinesterase inhibition after exposure to azinphos-methyl for 48h. Recovery studies together with characterization of the enzyme and sensitivity of the enzyme to pesticides can improve the toxicological evaluation. However, little is known about recovery patterns in organisms exposed to organophosphates. The aim of the present work was to evaluate the recovery capacity (during 21 days in pesticide-free water) of cholinesterase activity and neurotoxicity in C. gibbosa after 48h of exposure to azinphos-methyl. Also, lethality and carboxylesterase activity were registered during the recovery period. Regarding enzyme activities, after a 48-h exposure to 20μgL-1 of azinphos-methyl, cholinesterases showed an inhibition of 85% with respect to control, while carboxylesterases were not affected. After 21 days in pesticide-free water, cholinesterases continued to be inhibited (70%). Severe neurotoxicity signs were observed after exposure: 82% of the snails presented lack of adherence to vessels, 11% showed weak adherence, and 96% exhibited an abnormal protrusion of the head-foot region from shell. After 21 days in pesticide-free water, only 15% of the snails presented severe signs of neurotoxicity. However, during the recovery period significant lethality (30%) was registered in treated snails. C. gibbosa is a very sensitive organism to azinphos-methyl. These snails play an important role in the structure and function of aquatic food webs in this region. Thus, a decline of this species' population would probably have an impact on aquatic and non-aquatic communities. Our results show that C. gibbosa is a relevant sentinel species for studying exposure and effects of azinphos-methyl using behavioral and biochemical biomarkers. Neurotoxic behavioral signs are very sensitive, non-destructive biomarkers, which can be easily detected for about one week after acute exposure. Cholinesterse activity is a very useful biomarker showing a high sensitivity and a slow recovery capacity increasing the possibility to indirectly detect organophosphates for long periods after a contaminant event. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl
Autor:Cossi, P.F.; Beverly, B.; Carlos, L.; Kristoff, G.
Filiación:IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina
Laboratorio de Ecotoxicología Acuática (INBIOMA CONICET-UNCo), Junín de los Andes, Neuquén, Argentina
Palabras clave:Azinphos-methyl; B-esterases; Biomarkers; Invertebrates; Pesticides; azinphos methyl; biological marker; carboxylesterase; cholinesterase; azinphos methyl; biological marker; carboxylesterase; cholinesterase; cholinesterase inhibitor; fresh water; insecticide; water pollutant; azinphos methyl; biomarker; concentration (composition); ecotoxicology; enzyme activity; food web; gastropod; organophosphorus pesticide; pollution exposure; pollution tolerance; toxicity; acute toxicity; animal experiment; aquatic environment; Article; Chilina gibbosa; concentration (parameters); controlled study; disease severity; environmental exposure; enzyme activity; enzyme inhibition; freshwater species; mollusc; neurotoxicity; nonhuman; priority journal; sensitivity analysis; South America; structure activity relation; animal; Argentina; Chile; drug effects; enzyme activation; enzymology; metabolism; snail; toxicity; water pollutant; Argentina; Chile; Patagonia; Chilina; Invertebrata; Animals; Argentina; Azinphosmethyl; Biomarkers; Carboxylic Ester Hydrolases; Chile; Cholinesterase Inhibitors; Cholinesterases; Enzyme Activation; Fresh Water; Insecticides; Snails; Water Pollutants, Chemical
Año:2015
Volumen:167
Página de inicio:248
Página de fin:256
DOI: http://dx.doi.org/10.1016/j.aquatox.2015.08.014
Título revista:Aquatic Toxicology
Título revista abreviado:Aquat. Toxicol.
ISSN:0166445X
CODEN:AQTOD
CAS:azinphos methyl, 86-50-0; carboxylesterase, 59536-71-9, 83380-83-0, 9016-18-6, 9028-01-7; cholinesterase, 9001-08-5; Azinphosmethyl; Biomarkers; Carboxylic Ester Hydrolases; Cholinesterase Inhibitors; Cholinesterases; Insecticides; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166445X_v167_n_p248_Cossi

Referencias:

  • Anguiano, O.L., Castro, C., Venturino, A., Ferrari, A., Acute toxicity and biochemical effects of azinphos metthyl in the amphipod Hyalella curvispina (2014) Environ. Toxicol., 29, pp. 1043-1053
  • Barata, C., Solayan, A., Porte, C., Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna (2004) Aquat. Toxicol., 66 (2), pp. 125-139
  • Basack, S.B., Oneto, M.L., Fuchs, J.S., Wood, E.J., Kesten, E.M., Esterases of Corbicula fluminea as biomarkers of exposure to organophosphorus pesticides (1998) Bull. Environ. Contam. Toxicol., 61 (5), pp. 569-576
  • Bianco, K., Otero, S., Oliver, A.B., Nahabedian, D., Kristoff, G., Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea (2014) Ecotoxicol. Environ. Saf., 109, pp. 85-92
  • Bianco, K., Yusseppone, M.S., Otero, S., Luquet, C., Ríos de Molina, M.C., Kristoff, G., Cholinesterases and neurotoxicity as highly sensitive biomarkers for an organophosphate insecticide in a freshwater gastropod (Chilina gibbosa) with low sensitivity carboxylesterases (2013) Aquat. Toxicol., pp. 26-35
  • Bosnia, A.S., Kaisin, R.J., Tablado, A., Population dynamics and production of the freshwater snail Chilina gibbosa Sowerby 1841 (Chilinidae, Pulmonata) in a North-Patagonian reservoir (1990) Hydrobiologia, 190, pp. 97-110
  • Bretaud, S., Saglio, P., Saligaut, C., Auperin, B., Biochemical and behavioral effects of carbofuran in goldfish (Carassius auratus) (2002) Environ. Toxicol. Chem., 21 (1), pp. 175-181
  • Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A., Cholinesterase and carboxylesterase inhibition in Planorbarius corneus exposed to binary mixtures of azinphos-methyl and chlorpyrifos (2013) Aquat. Toxicol., pp. 124-134
  • Corsini, E., Sokooti, M., Galli, C.L., Moretto, A., Colosio, C., Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence (2013) Toxicology, 307, pp. 123-135
  • Couillard, C.M., Burridge, L.E., Sublethal exposure to azamethiphos causes neurotoxicity, altered energy allocation and high mortality during simulated live transport in American lobster (2015) Ecotoxicol. Environ. Saf., 115, pp. 291-299
  • Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., A new and rapidcolorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Ferrari, A., Anguiano, O.L., Soleno, J., Venturino, A., Pechen de D'Angelo, A.M., Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl (2004) Comp. Biochem. Physiol. C, 139 (4), pp. 239-243
  • Ferrari, A., Venturino, A., de D'Angelo, A.M.P., Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphosmethyl, parathion and carbaryl exposure in the goldfish (Carassius auratus) (2004) Ecotoxicol. Environ. Saf., 57 (3), pp. 420-425
  • Ferriz, R.A., Algunos aspectos de la dieta de cuatro species ícticas del río Limay (Argentina) (1993) Rev. Ictiología, pp. 1-7
  • Fleming, W.J., Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides (1981) Arch. Environ. Contam. Toxicol., 10, pp. 215-229
  • Fuentealba, C., Figueroa, R., Monroe, J.J., Endemism analysis of chilean freshwater mollusks (2010) Rev. Chil. Hist. Nat., 83, pp. 289-298
  • Galloway, T., Handy, R., Immunotoxicity of organophosphorous pesticides (2003) Ecotoxicology, 12, pp. 345-363
  • Galloway, T., Millward, N., Browne, M., Depledge, M., Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusk Mytilus edulis using combined esterase activities as biomarkers (2002) Aquat. Toxicol., 61, pp. 169-180
  • Glynn, P., A mechanism for organophosphate-induced delayed neuropathy (2006) Toxicol. Lett., 162, pp. 94-97
  • González Vejares, S., Sabat, P., Sanchez-Hernandez, J.C., Tissue-specific inhibition and recovery of esterase activities in Lumbricus terrestris experimentally exposed to chlorpyrifos (2010) Comp. Biochem. Physiol. C, 151, pp. 351-359
  • Gutiérrez-Gregoric, D.E., Núñez, V., Rumi, A., Population studies of an endemic gastropod from waterfall environments (2010) Am. Malacol. Bull., 28, pp. 159-165
  • Habig, C., Di Giulio, R.T., Biochemical characteristics of cholinesterases in aquatic organisms (1991) Cholinesterase Inhibiting Insecticides: Their Impact on Wildlife and the Environment, 2, pp. 19-34. , Elsevier, Amsterdam, Chemicals in agriculture
  • Jemec, A., Drobne, D., Tišler, T., Sepčić, K., Biochemical biomarkers in environmental studies-lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species (2010) Environ. Sci. Pollut. Res., 17 (3), pp. 571-581
  • Jensen, C.S., Garsdal, L., Baatrup, E., Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle Pterostichus cupreus. A linkage between biomarkers at two levels of biological complexity (1997) Environ. Toxicol. Chem., 16 (8), pp. 1727-1732
  • Jin, Y., Liu, Z., Peng, T., Fu, Z., The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity (2015) Fish Shellfish Immunol., 43, pp. 405-414
  • Jindal, R., Kaur, M., Acetylcholinesterase inhibition and assessment of its recovery response in some organs of Ctenopharyngodon idellus induced by chlorpyrifos (2014) Int. J. Sci. Environ. Technol., 3 (2), pp. 473-480
  • Jokanovic, M., Biotransformation of organophosphorus compounds (2001) Toxicology, 166, pp. 139-160
  • Jokanovic, M., Kosanovic, M., Neurotoxic effects in patients poisoned with organophosphorus pesticides (2010) Environ. Toxicol. Pharmacol., 29, pp. 195-201
  • Jordaan, M.S., Reinecke, S.A., Reinecke, A.J., Acute and sublethal effects of sequential exposure to the pesticide azinphos-methyl on juvenile earthworms (Eisenia andrei) (2012) Ecotoxicology, 21 (3), pp. 649-661
  • Kao, L.R., Motoyama, N., Dauterman, W.C., Multiple forms of esterases in mouse, rat, and rabbit liver, and their role in hydrolysis of organophosphorus and pyrethroid insecticides (1984) Pestic. Biochem. Physiol., 23 (1), pp. 66-73
  • Kavitha, P., Rao, J.V., Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis (2008) Environ. Toxicol. Pharmacol., 26 (2), pp. 192-198
  • Kristoff, G., Estudio comparativo de biomarcadores en los invertebrados acuáticos Biomphalaria glabrata y Lumbriculus variegatus expuestos a pesticidas de relevancia ambiental (2010) Doctoral Thesis. Facultad de Ciencias Exactas y Naturales
  • Kristoff, G., Cacciatore, L.C., Guerrero, N.R.V., Cochón, A.C., Effects of the organophosphate insecticide azinphos-methyl on the reproduction and cholinesterase activity of Biomphalaria glabrata (2011) Chemosphere, 84 (5), pp. 585-591
  • Kristoff, G., Chiny Barrionuevo, D., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A., In vivo studies on inhibition and recuperation of B-esterase activity in Biomphalaria glabrata exposed to azinphos-methyl: analysis of enzyme, substrate and tissue dependence (2012) Aquat. Toxicol., pp. 19-26
  • Kristoff, G., Guerrero, N.R.V., Cochón, A.C., Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl (2010) Aquat. Toxicol., 96 (2), pp. 115-123
  • Kristoff, G., Guerrero, N.V., de D'Angelo, A.M.P., Cochón, A.C., Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus (2006) Toxicology, 222 (3), pp. 185-194
  • Laguerre, C., Sanchez-Hernandez, J., Köhler, H.R., Triebskorn, R., Capowiez, Y., Rault, M., Mazzia, C., B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure (2009) Environ. Pollut., 157, pp. 199-207
  • Lam, P.K.S., Use of biomarkers in environmental monitoring (2009) Ocean Coast. Manag., 52, pp. 348-354
  • Loewy, M., Kirs, V., Carvajal, G., Venturino, A., Pechén de Angelo, A.M., Groundwater contamination by azinphos methyl in the Northern Patagonic Region (Argentina) (1999) Sci. Total Environ., 225 (3), pp. 211-218
  • Loewy, R.M., Monza, L.B., Kiers, V.E., Savini, M.C., Pesticide distribution in an agricultural environment in Argentina (2011) J. Environ. Sci. Health B., 46, pp. 662-670
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Malagnoux, L., Capowiez, Y., Rault, M., Tissue distribution, characterization and in vitro inhibition of B-esterases in the earwing Forficula auricularia (2014) Chemosphere, 112, pp. 456-464
  • Maxwell, D.M., The specificity of carboxylesterase protection against the toxicity of organophosphorus compounds (1992) Toxicol. Appl. Pharmacol., 114 (2), pp. 306-312
  • Miranda-Contreras, L., Gómez-Pérez, R., Rojas, G., Cruz, I., Berrueta, L., Salmen, S., Colmenares, M., Osuna, J.A., Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers (2013) J. Occup. Health, 55 (3), pp. 195-203
  • Ochoa, V., Riva, C., Faria, M., Barata, C., Responses of B-esterase enzymes in oysters (Crassostrea gigas) transplanted to pesticide contaminated bays form the Ebro Delta (NE, Spain) (2013) Mar. Pollut. Bull., 66, pp. 135-142
  • Oehlmann, J., Schulte-Oehlmann, U., Invertebrates. molluscs as bioindicators (2003) Bioindicators & biomonitors: Principles, Concepts and Applications, pp. 577-635. , Elsevier, Amsterdam, Lausanne, New York, B.A. Markert, A.M. Breure, H.G. Zechmeister (Eds.)
  • Oruc, E., Oxidative stress responses and recovery patterns in the liver of Oreochromis niloticus exposed to chlorpyrifos-ethyl (2012) Bull. Environ. Contam. Toxicol., 88 (5), pp. 678-684
  • Otero, S., Búsqueda de la mejor combinación entre enzima, sustrato, tejido y posibilidad de recuperación de B-esterasas de Planorbarius corneus para ser utilizadas como biomarcadores de exposición al organofosforado metilazinfos (2013) Undergraduate Thesis. Facultad de Ciencias Exactas y Naturales
  • Ozretic, B., Krajnovic-Ozretic, M., Esterase heterogeneity in mussel Mytilus galloprovincialis: effects of organophosphate and carbamate pesticides in vitro (1992) Comp. Biochem. Physiol. C, 103, pp. 221-225
  • Pope, C.N., Organophosphorus pesticides: do they all have the same mechanism of toxicity? (1999) J. Toxicol. Environ. Health B, 2 (2), pp. 161-181
  • Potter, P.M., Wadkins, R.M., Carboxylesterases: detoxifying enzymes and targets for drug therapy (2006) Curr. Med. Chem., 13, pp. 1045-1054
  • Rao, J.V., Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus (2006) Pestic. Biochem. Physiol., 86 (2), pp. 78-84
  • Rivadeneira, P.R., Agrelo, M., Otero, S., Kristoff, G., Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod (2013) Ecotoxicol. Environ. Saf., 90, pp. 82-88
  • Rumi, A., Gutierrez Gregoric, D.E., Núñez, V., Darrigan, G.A., Malacología latinoamericana: moluscos de agua dulce de Argentina (2008) Rev. Biol. Trop., 56, pp. 77-111
  • Sanchez-Hernandez, J.C., Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination (2007) Environmental Pollution: New Research, pp. 1-45. , Nova Science Publishers, Inc, N.Y., USA, R.H. Plattenberg (Ed.)
  • Sanchez-Hernandez, J.C., Wheelock, C.E., Tissue distribution, isozyme abundance and sensitivity to chorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris (2009) Environ. Pollut., 157, pp. 264-272
  • Satho, T., Hosokawa, M., The mammalian carboxylesterases: from molecules to functions (1998) Annu. Rev. Pharmacol., 38, pp. 257-288
  • Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., Jalali, N., Abdollahi, M., Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators (2005) Hum. Exp. Toxicol., 24, pp. 439-445
  • Shafiullah, M., Organophosphorus compounds and teratogenecity/embryotoxicity-viewpoint (2013) J. Environ. Immunol. Toxicol., 1 (1), pp. 22-25
  • Sinha, V.S., Kumar, N., Assesment of Mito inhibitory and Genotoxic effects of two Organophosphate Pesticides in the root tip cells of Allium cepa L (2014) Annal. Plant Sci., 3 (5), pp. 699-703
  • (2003), Niveles Guía Nacionales de Calidad de Agua Ambiente. Desarrollos de niveles guía nacionales de calidad de agua ambiente correspondientes a metilazinfos. República Argentina; Timbrell, J., (2000) Principles of Biochemical Toxicology, , Taylor and Francis, London
  • (2001), Interim registration 772 eligibility decision for azinphos-methyl. Case No. 0235; Valdovinos, C., Estado de conocimiento de los gasterópodos dulceacuícolas de Chile (2006) Gayana, 70, pp. 88-95
  • van der Oost, R., Beyer, J., Vermeulen, N.P.E., Fish bioaccumulation and biomarkers in environmental risk assessment: a review (2003) Environ. Toxicol. Pharmacol., 13, pp. 57-149
  • Vioque-Fernández, A., Alves de Almeida, E., López-Barea, J., Esterases as pesticide biomarkers in crayfish (Procambarus clarkii, Crustacea): tissue distribution, sensitivity to model compounds and recovery from inactivation (2007) Comp. Biochem. Physiol. C, 145, pp. 404-412
  • Wheelock, C.E., Shan, G., Ottea, J., Overview of carboxylesterases and their role in the metabolism of insecticides (2005) J. Pestic. Sci., 30 (2), pp. 75-83
  • Wheelock, C.E., Phillips, B.M., Anderson, B.S., Miller, J.L., Miller, M.J., Hammock, B.D., Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs) (2008) Rev. Environ. Contam. Toxicol., 195, pp. 117-178

Citas:

---------- APA ----------
Cossi, P.F., Beverly, B., Carlos, L. & Kristoff, G. (2015) . Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl. Aquatic Toxicology, 167, 248-256.
http://dx.doi.org/10.1016/j.aquatox.2015.08.014
---------- CHICAGO ----------
Cossi, P.F., Beverly, B., Carlos, L., Kristoff, G. "Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl" . Aquatic Toxicology 167 (2015) : 248-256.
http://dx.doi.org/10.1016/j.aquatox.2015.08.014
---------- MLA ----------
Cossi, P.F., Beverly, B., Carlos, L., Kristoff, G. "Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl" . Aquatic Toxicology, vol. 167, 2015, pp. 248-256.
http://dx.doi.org/10.1016/j.aquatox.2015.08.014
---------- VANCOUVER ----------
Cossi, P.F., Beverly, B., Carlos, L., Kristoff, G. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl. Aquat. Toxicol. 2015;167:248-256.
http://dx.doi.org/10.1016/j.aquatox.2015.08.014