Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Azinphos-methyl (AZM) and chlorpyrifos (CPF) are broad-spectrum organophosphate insecticides used for pest control on a number of food crops in many parts of the world that have been shown to inhibit cholinesterase activity in the non-target freshwater gastropod Planorbarius corneus. The present study was undertaken to determine: (a) whether AZM and CPF induce oxidative stress in P. corneus, and (b) whether a mixture of both organophosphates that causes a higher neurotoxicity than single pesticides also causes an enhanced oxidative stress. To this end, non-enzymatic and enzymatic parameters were measured in the soft tissues of snails acutely exposed to the insecticides in single-chemical (2.5mg AZML-1 and 7.5μgCPFL-1) and a binary-mixture (1.25mgAZML-1 plus 3.75μgCPFL-1) studies. At 24h, all pesticide-exposed groups showed significantly decreased glutathione (GSH) and glutathione disulfide (GSSG) levels when compared to control animals. At 48h, all exposed groups showed an alteration of the redox status (GSH/GSSG ratio) and a significant increase in malondialdehyde levels. The exposure for 48h to AZM and CPF, alone or in the binary mixture, also resulted in a significant decrease of the antioxidant superoxide dismutase activity. The greatest decrease was observed with CPF exposure (59% of decrease relative to the control group). A significant increase in catalase and glutathione S-transferase activities was observed in CPF group and in CPF and AZM+CPF groups, respectively. The activities of glutathione reductase and glucose 6-phosphate dehydrogenase did not show significant changes with respect to controls in any treatment group. In conclusion, the data shown in the present study provide evidence that AZM, CPF and a mixture of both organophosphates are able to induce oxidative stress and oxidative damage in P. corneus tissues. However, no similarities between the degree of neurotoxicity and the degree of alterations of the measured oxidative stress parameters were found. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus
Autor:Cacciatore, L.C.; Nemirovsky, S.I.; Verrengia Guerrero, N.R.; Cochón, A.C.
Filiación:Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires, 1428, Argentina
Palabras clave:Antioxidant enzymes; Invertebrates; Mixtures; Organophosphates; Pesticides; azinphos methyl; catalase; chlorpyrifos; glucose 6 phosphate dehydrogenase; glutathione; glutathione disulfide; glutathione reductase; glutathione transferase; malonaldehyde; polyunsaturated fatty acid; reactive oxygen metabolite; superoxide dismutase; azinphos methyl; catalase; chlorpyrifos; fresh water; glutathione reductase; glutathione transferase; insecticide; water pollutant; azinphos methyl; chemical pollutant; chlorpyrifos; enzyme activity; gastropod; physiological response; redox conditions; toxicity; adult; animal experiment; animal tissue; Article; comparative study; concentration (parameters); controlled study; environmental exposure; enzyme activity; freshwater species; gastropod; lipid peroxidation; molecular dynamics; neurotoxicity; nonhuman; oxidation reduction state; oxidative stress; Planorbarius corneus; priority journal; protein content; protein expression; protein localization; tissue distribution; upregulation; animal; drug effects; enzyme activation; gastropod; lipid peroxidation; metabolism; oxidative stress; toxicity; water pollutant; Animalia; Gastropoda; Invertebrata; Planorbarius corneus; Animals; Azinphosmethyl; Catalase; Chlorpyrifos; Enzyme Activation; Fresh Water; Gastropoda; Glutathione Reductase; Glutathione Transferase; Insecticides; Lipid Peroxidation; Oxidative Stress; Water Pollutants, Chemical
Año:2015
Volumen:167
Página de inicio:12
Página de fin:19
DOI: http://dx.doi.org/10.1016/j.aquatox.2015.07.009
Título revista:Aquatic Toxicology
Título revista abreviado:Aquat. Toxicol.
ISSN:0166445X
CODEN:AQTOD
CAS:azinphos methyl, 86-50-0; catalase, 9001-05-2; chlorpyrifos, 2921-88-2; glucose 6 phosphate dehydrogenase, 37259-83-9, 9001-40-5; glutathione, 70-18-8; glutathione disulfide, 27025-41-8; glutathione reductase, 9001-48-3; glutathione transferase, 50812-37-8; malonaldehyde, 542-78-9; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Azinphosmethyl; Catalase; Chlorpyrifos; Glutathione Reductase; Glutathione Transferase; Insecticides; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166445X_v167_n_p12_Cacciatore

Referencias:

  • Abele, D., Puntarulo, S., Formation of reactive species and induction of antioxidant defense systems in polar and temperate marine invertebrates and fish (2004) Comp. Biochem. Physiol. A, 138, pp. 405-415
  • Agarwal, R., Chase, S.D., Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples (2002) J. Chromatogr. B, 775, pp. 121-126
  • Anguiano, O.L., Castro, C., Venturino, A., Ferrari, A., Acute toxicity and biochemical effects of azinphos methyl in the amphipod Hyalella curvispina (2014) Environ. Toxicol., 29, pp. 1043-1053
  • Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C., Cholinesterase and carboxylesterase inhibition in Planorbarius corneus exposed to binary mixtures of azinphos-methyl and chlorpyrifos (2013) Aquat. Toxicol., 128-129, pp. 124-134
  • Claiborne, A., Catalase activity (1985) CRC Handbook of Methods for Oxygen Radical Research, pp. 283-284. , CRC Press, Boca Raton, FL, R. Greenwald (Ed.)
  • Cnubben, N.H.P., Rietjens, I.M., Wortelboer, H., van Zanden, J., van Bladeren, P.J., The interplay of glutathione-related processes in antioxidant defense (2001) Environ. Toxicol. Pharmacol., 10, pp. 141-152
  • Crane, A.L., Klein, K., Zanger, U.M., Olson, J.R., Effect of CYP2B6*6 and CYP2C19*2 genotype on chlorpyrifos metabolism (2012) Toxicology, 293, pp. 115-122
  • Dickinson, D.A., Forman, H.J., Cellular glutathione and thiols metabolism (2002) Biochem. Pharmacol., 64, pp. 1019-1026
  • Domingues, I., Agra, A.R., Monaghan, K., Soares, A.M.V.M., Nogueira, A.J.A., Cholinesterase and glutathione-S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination (2010) Environ. Toxicol. Chem., 29, pp. 5-18
  • Fox, J., Weisberg, S., (2011) An {R} Companion to Applied Regression, , http://socserv.socsci.mcmaster.ca/jfox/Books/Companion, Sage, Thousand Oaks, CA
  • González, P.M., Abele, D., Puntarulo, S., Exposure to excess disolved iron in vivo affects oxidative status in the bivalve Mya arenaria (2010) Comp. Biochem. Physiol. C, 152, pp. 167-174
  • Gormley, K.L., Teather, K.L., Guignion, D.L., Changes in salmonid communities associated with pesticides runoff events (2005) Ecotoxicology, 14, pp. 671-678
  • Gupta, R.C., Classification and uses of organophosphates and carbamates (2006) Toxicology of Organophosphate and Carbamate Compounds, pp. 5-24. , Elesevier Academic Press, Burlington, MA, R.C. Gupta (Ed.)
  • Habig, W.H., Pabst, M.J., Kakoby, W.B., Glutathione S-transferases: the first enzymatic step in mercapturic acid formation (1974) J. Biol. Chem, 249, pp. 7130-7139
  • Itziou, A., Kaloyianni, M., Dimitriadis, V.K., Effects of organic contaminants in reactive oxygen species, protein carbonylation and DNA damage on digestive gland and haemolymph of land snails (2011) Chemosphere, 85, pp. 1101-1107
  • Jopp, F., Comparative studies on the dispersal of the Great Ramshorn (Planorbarius corneus L.): a modelling approach (2006) Limnologica, 36, pp. 17-25
  • Karanth, S., Shivanandappa, T., Organophosphate-sensitive carboxylesterase isozyme (S) in the rat liver (1995) Enzymes of the Cholinesterase Family, pp. 394-395. , Springer, US
  • Kand'ár, R., Žáková, P., Lotková, H., Kučera, O., Červinková, Z., Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection (2007) J. Pharmacol. Biomed. Anal., 43, pp. 1382-1387
  • Kristoff, G., Verrengia Guerrero, N., Cochón, A., Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus (2008) Chemosphere, 72, pp. 1333-1339
  • Loewy, R.M., Monza, L.B., Kiers, V.E., Savini, M.C., Pesticide distribution in an agricultural environment in Argentina (2011) J. Environ. Sci. Health B, 46, pp. 662-670
  • Lowry, O.H., Rosebrough, A., Farr, L., Randall, R.S., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 249, pp. 265-275
  • Lushchak, V.I., Adaptive response to oxidative stress: bacteria, fungi, plants and animals (2011) Comp. Biochem. Physiol. C Toxicol. Pharmacol., 153, pp. 175-190
  • Marino, D., Ronco, A., Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina (2005) Bull. Environ. Contam. Toxicol., 75, pp. 820-826
  • Meijer, M., Hamers, T., Westerink, R.H., Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub) micromolar concentrations of organophosphate insecticides (2014) Neurotoxicology, 43, pp. 110-116
  • Milatovic, D., Gupta, R.C., Aschner, M., Anticholinesterase toxicity and oxidative stress (2006) Sci. World J., 28, pp. 295-310
  • Misra, H.P., Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase (1972) J. Biol. Chem., 247, pp. 3170-3175
  • Ojha, A., Yaduvanshi, S.K., Pant, S.C., Lomash, V., Srivastava, N., Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues (2013) Environ. Toxicol., 28, pp. 543-552
  • Oruç, ÖE., Sevgiler, Y., Üner, N., Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl (2004) Comp. Biochem. Physiol. C, 137, pp. 43-51
  • Otieno, P.O., Schramm, K.-W., Pfister, G., Lalah, J.O., Ojwach, S.O., Virani, M., Spatial distribution and temporal trend in concentration of carbofuran, diazinon and chlorpyrifos ethyl residues in sediment and water in Lake Naivasha, Kenya (2012) Bull. Environ. Contam. Toxicol., 88, pp. 526-532
  • Patetsini, E., Dimitriadis, V.K., Kaloyianni, M., Biomarkers in marine mussels, Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam (2013) Aquat. Toxicol., 126, pp. 338-345
  • Peña-Llopis, S., Peña, J.B., Sancho, E., Fernández-Vega, C., Ferrando, M.D., Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate (2001) Chemosphere, 45, pp. 671-681
  • Puntarulo, S., Cederbaum, A.I., Role of Cytochrome P450 in the stimulation of microsomal production of reactive oxygen species by ferritin (1996) Biochim. Biophys. Acta, 1289, pp. 238-246
  • Core Team, R., R: A Language and Environment for Statistical Computing (2015), http://www.R-project.org/, R Foundation for Statistical Computing, Vienna, Austria; Repetto, M., Semprine, J., Boveris, A., Lipid peroxidation: chemical mechanism, biological implications and analytical determination (2012) Lipid Peroxidation, pp. 1-28. , InTech, New Delhi, A. Catala (Ed.)
  • Rivera-Ingraham, G.A., Malanga, G., Puntarulo, S., Pérez, A.F., Ruiz-Tabares, A., Maestre, M., González-Aranda, R., García-Gómez, J.C., Antioxidant defenses and trace metal bioaccumulation capacity of Cymbula nigra (Gastropoda: Patellidae) (2013) Water Air Soil Pollut., 224 (1458), pp. 1-13
  • Schaedle, M., Bassham, J.A., Chloroplast glutathione reductase (1977) Plant Physiol., 59, pp. 1011-1012
  • Schulz, R., Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review (2004) J. Environ. Qual., 33, pp. 419-448
  • Stephensen, E., Sturve, J., Förlin, L., Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver (2002) Comp. Biochem. Physiol. C, 133, pp. 435-442
  • Tan, K.P., Yang, M., Ito, S., Activation of Nrf2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress (2007) Mol. Pharmacol., 72, pp. 1380-1390
  • Tongbai, W., Damrongphol, P., Bioactivation of chlorpyrifos in the riceland prawn, Macrobrachium lanchesteri (2011) J. Biol. Sci., 11, pp. 275-281
  • Verma, R.S., Mehta, A., Srivastava, N., In vivo clorpyrifos induced oxidative stress: attenuation by antioxidant vitamins (2007) Pestic. Biochem. Physiol., 88, pp. 191-196
  • Ulusu, N.N., Tandogan, B., Purification and kinetics of sheep kidney cortex glucose-6-phosphate dehydrogenase (2006) Comp. Biochem. Physiol. B, 143, pp. 249-255
  • United States Environmental Protection Agency (2001), Interim registration eligibility decision for azinphos-methyl. Case no. 0235; United States Environmental Protection Agency (2011), Chlorpyrifos: Preliminary Human Health Assessment for Registration Review. Office of Chemical Safety and Pollution Prevention. Washington D. C; Williams, W.M., Giddings, J.M., Purdy, J., Solomon, K.R., Giesy, J.P., Exposures of aquatic organisms resulting from the use of chlorpyrifos in the United States (2014) Rev. Environ. Contam. Toxicol., 231, pp. 77-118

Citas:

---------- APA ----------
Cacciatore, L.C., Nemirovsky, S.I., Verrengia Guerrero, N.R. & Cochón, A.C. (2015) . Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquatic Toxicology, 167, 12-19.
http://dx.doi.org/10.1016/j.aquatox.2015.07.009
---------- CHICAGO ----------
Cacciatore, L.C., Nemirovsky, S.I., Verrengia Guerrero, N.R., Cochón, A.C. "Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus" . Aquatic Toxicology 167 (2015) : 12-19.
http://dx.doi.org/10.1016/j.aquatox.2015.07.009
---------- MLA ----------
Cacciatore, L.C., Nemirovsky, S.I., Verrengia Guerrero, N.R., Cochón, A.C. "Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus" . Aquatic Toxicology, vol. 167, 2015, pp. 12-19.
http://dx.doi.org/10.1016/j.aquatox.2015.07.009
---------- VANCOUVER ----------
Cacciatore, L.C., Nemirovsky, S.I., Verrengia Guerrero, N.R., Cochón, A.C. Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquat. Toxicol. 2015;167:12-19.
http://dx.doi.org/10.1016/j.aquatox.2015.07.009