Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cholinesterases and carboxylesterases belong to the group of B-esterases, the serine superfamily of esterases that are inhibited by organophosphorus compounds. It is now generally accepted that before using the B-esterases as biomarkers of exposure to organophosphorus and carbamates in a given species, the biochemical characteristics of these enzymes should be carefully studied. In this study, the enzyme/s and the tissue/s to be selected as sensitive biomarkers of organophosphorus exposition in the freshwater gastropod Biomphalaria glabrata were investigated. Firstly, the substrate dependence of cholinesterase and carboxylesterase activities in whole organism soft tissue and in different tissues of the snail (head-foot, pulmonary region, digestive gland, and gonads) was analyzed. Measurements of cholinesterase activity were performed using three substrates: acetylthiocholine (AcSCh), propionylthiocholine (PrSCh), and butyrylthiocholine (BuSCh). Carboxylesterase activity was determined using four different substrates: 1-naphthyl acetate (1-NA), 2-naphthyl acetate (2-NA), p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). Regardless of the tissue analyzed, the highest specific activity was obtained when using AcSCh, followed by PrSCh. Cholinesterase activity measured with BuSCh was very low in all cases. On the other hand, the highest cholinesterase activity was measured in head-foot and in pulmonary region, representing in the case of AcSCh hydrolysis 196% and 180% of the activity measured in whole organism soft tissue, respectively. In contrast, AcSCh hydrolysis in digestive gland and gonads was 28% and 50% of that measured in whole organism soft tissue. Regarding carboxylesterase activity, although all tissues hydrolyzed the four substrates assayed, substrate preferences varied among tissues. In particular, digestive glands showed higher carboxylesterase activity than the other tissues (299%, 359% and 137% of whole organism soft tissue activity) when measured with 1-NA, 2-NA and p-NPA as substrates, respectively. In contrast, with p-NPB as substrate, the highest carboxylesterase activity was observed in pulmonary region. Exposure of the snails for 48h to azinphos-methyl concentrations in the range of 0.05-2.5mgL -1 resulted in different degrees of inhibition of cholinesterase and carboxylesterase activities, depending on the enzyme, pesticide concentration, the substrate, and the tissue analyzed. In general, carboxylesterase activity measured with p-NPA and p-NPB was much more sensitive to azinphos-methyl inhibition than cholinesterase activity. The results also showed that while B-esterase activities in whole organism soft tissue and pulmonary region recovered completely within 14 days, carboxylesterase activity in digestive glands remained highly inhibited. On the whole, the results of the present study emphasize how important it is to characterize and measure cholinesterase and carboxylesterase activities jointly to make a proper assessment of the impact of organophosphorus pesticides in non-target species. © 2012 Elsevier B.V..

Registro:

Documento: Artículo
Título:In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: Analysis of enzyme, substrate and tissue dependence
Autor:Kristoff, G.; Chiny Barrionuevo, D.; Cacciatore, L.C.; Verrengia Guerrero, N.R.; Cochón, A.C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina
Palabras clave:Azinphos-methyl; Biomphalaria glabrata; Carboxylesterases; Cholinesterases; Freshwater invertebrate; Pesticides; 1 naphthyl acetate; 2 naphthyl acetate; 4 nitrophenyl acetate; acetic acid derivative; acetylthiocholine; azinphos methyl; butyric acid 4 nitrophenyl ester; butyric acid derivative; butyrylthiocholine; carboxylesterase; choline derivative; cholinesterase; propionylthiocholine; unclassified drug; bioaccumulation; biomarker; carbamate (ester); enzyme activity; inhibition; insecticide; organophosphate; pollution exposure; snail; substrate; animal experiment; animal tissue; article; Biomphalaria glabrata; concentration response; controlled study; environmental exposure; enzyme activity; enzyme analysis; enzyme inhibition; enzyme kinetics; enzyme specificity; enzyme substrate complex; exocrine gland; gonad; in vivo study; lung; nonhuman; physical sensitivity; priority journal; protein hydrolysis; soft tissue; tissue specificity; Animals; Azinphosmethyl; Biomphalaria; Carboxylesterase; Cholinesterases; Enzyme Activation; Water Pollutants, Chemical; Biomphalaria glabrata; Gastropoda; Invertebrata
Año:2012
Volumen:112-113
Página de inicio:19
Página de fin:26
DOI: http://dx.doi.org/10.1016/j.aquatox.2012.01.016
Título revista:Aquatic Toxicology
Título revista abreviado:Aquat. Toxicol.
ISSN:0166445X
CODEN:AQTOD
CAS:1 naphthyl acetate, 830-81-9; 4 nitrophenyl acetate, 830-03-5; acetylthiocholine, 1797-69-9, 4468-05-7; azinphos methyl, 86-50-0; butyric acid 4 nitrophenyl ester, 2635-84-9; butyrylthiocholine, 1866-16-6, 4555-00-4; carboxylesterase, 59536-71-9, 83380-83-0, 9016-18-6, 9028-01-7; cholinesterase, 9001-08-5; propionylthiocholine, 24578-90-3; Azinphosmethyl, 86-50-0; Carboxylesterase, 3.1.1.1; Cholinesterases, 3.1.1.8; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166445X_v112-113_n_p19_Kristoff

Referencias:

  • Abd Allah, A.T., Wanas, M.Q.A., Thompson, S.N., Dissolved heavy metals, lead, cadmium and mercury, accumulate in the body of the schistosome vector, Biomphalaria glabrata (Gastropoda: pulmonata) (2003) J. Moll. Stud., 69, pp. 35-41
  • Ansaldo, M., Nahabedian, D.E., Holmes-Brown, E., Agote, M., Ansay, C.V., Verrengia Guerrero, N.R., Wider, E.A., Potential use of glycogen level as biomarker of chemical stress in Biomphalaria glabrata (2006) Toxicology, 224, pp. 119-127
  • Barata, C., Solayan, A., Porte, C., Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphia magna (2004) Aquat. Toxicol., 66, pp. 125-139
  • Basack, S.B., Oneto, M.L., Fuchs, J.S., Wood, E.J., Kesten, E.M., Esterases of Corbicula fluminea as biomarkers of exposure to organophosphorus pesticides (1998) Bull. Environ. Contam. Toxicol., 61, pp. 569-576
  • Bonacci, S., Corsi, I., Focardi, S., Cholinesterases in the Antartic scallop Adamussium colbecki: characterization and sensitivity to pollutants (2009) Ecotoxicol. Environ. Saf., 72, pp. 1481-1488
  • Brown, M., Davies, I.M., Moffat, C.F., Redshaw, J., Craft, J.A., Characterisation of choline esterases and their tissue and subcellular distribution in mussel (Mytilus edulis) (2004) Mar. Environ. Res., 57, pp. 155-169
  • Cacciatore, L.C., (2009), Investigación de procesos toxicocinéticos del pesticida metil azinfos en dos especies de invertebrados acuáticos. Master Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C., Inhibición y recuperación de la actividad de B-esterasas luego de la exposición a metilazinfos en un gastrópodo de agua dulce: Planorbarius corneus (2010) Acta Toxicol. Argent., 18 (SUPPL.), p. 27
  • Diamantino, T.C., Almeida, E., Soares, A.M.V.M., Guilhermino, L., Characterization of cholinesterases from Daphnia magna (Straus) and their inhibition by zinc (2003) Bull. Environ. Contam. Toxicol., 71, pp. 219-225
  • Domingues, I., Agra, A.R., Monaghan, K., Soares, A.M.V.M., Nogueira, A.J.A., Cholinesterase and glutathione-S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination (2010) Environ. Toxicol. Chem., 29, pp. 5-18
  • Duysen, E.G., Li, B., Darvesh, S., Lockridge, O., Sensitivity of butyrylcholinesterase knockout mice to (-)-huperazine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholinesterase function in neurotransmission (2007) Toxicology, 233, pp. 60-69
  • Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Ferrari, A., Venturino, A., Pechen de Dóangelo, A.M., Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphos methyl, parathion and carbaryl exposure in the goldfish (Carassius auratus) (2004) Ecotoxicol. Environ. Saf., 57, pp. 420-425
  • Fried, B., Sundar Rao, K., Sherma, J., Fatty acid composition of Biomphalaria glabrata (Gastropoda: Planorbidae) fed hens's egg yolk versus leaf lettuce (1992) Comp. Biochem. Physiol. A, 101, pp. 351-352
  • Gagnaire, B., Geffard, O., Xuereb, B., Margoum, C., Garric, J., Cholinesterase activities as potential biomarkers: characterization in two freshwater snails, Potamopyrgus antipodarum (Mollusca, Hydrobiidae, Smith 1889) and Valvata piscinalis (Mollusca, Valvatidae, Muller 1774) (2008) Chemosphere, 71, pp. 553-560
  • Galloway, T.S., Millward, N., Brownw, M.A., Depledge, M.H., Rapid assessment of organophosphorus/carbamate exposure in the bivalve mollusk Mytilus edulis using combined esterase activities as biomarkers (2002) Toxicology, 61, pp. 169-180
  • González Vejares, S., Sabat, P., Sanchez-Hernandez, J.C., Tissue-specific inhibition and recovery of esterase activities in Lumbricus terrestris experimentally exposed to chlorpyrifos (2010) Comp. Biochem. Physiol. C, 151, pp. 351-359
  • Granovsky, A.V., Ma, L., Ricaud, R., Bengtson, R.L., Selim, H.M., Fate of azinphosmethyl in a sugarcane field: distributions in canopy, soil, and runoff (1996) J. Environ. Qual., 25, pp. 1210-1216
  • Hannam, M.L., Hagger, J.A., Jones, M.B., Galloway, T.S., Characterisation of esterases as potential biomarkers of pesticide exposure in the lugworm Arenicola marina (Annelida Polychaeta) (2008) Environ. Pollut., 152, pp. 342-350
  • Klosterhaus, S.L., DiPinto, L.M., Chandler, G.T., A comparative assessment of azinphosmethyl bioaccumulation and toxicity in two estuarine meiobenthic harpacticoid copepods (2003) Environ. Toxicol. Chem., 22, pp. 2960-2968
  • Kristoff, G., (2010), Estudio comparativo de biomarcadores en los invertebrados acuáticos Biomphalaria glabrata y Lumbriculus variegatus expuestos a pesticidas de relevancia ambiental. PhD Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Kristoff, G., Verrengia Guerrero, N.R., Pechén de D'Angelo, A.M., Cochón, A.C., Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus (2006) Toxicology, 222, pp. 185-194
  • Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C., Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus (2008) Chemosphere, 72, pp. 1333-1339
  • Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C., Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl (2010) Aquat. Toxicol., 96, pp. 115-123
  • Kristoff, G., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C., Effects of the organophosphate insecticida azinphos-methyl on the reproduction activity of Biomphalaria glabrata (2011) Chemosphere, 84, pp. 585-591
  • Laguerre, C., Sanchez-Hernandez, J., Köhler, H.R., Triebskorn, R., Capowiez, Y., Rault, M., Mazzia, C., B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure (2009) Environ. Pollut., 157, pp. 199-207
  • Lobato Paraense, W., The schistosome vectors in the Americas (2001) Mem. Inst. Oswaldo Cruz, 96 (SUPPL.), pp. 7-16
  • Lockridge, O., Duysen, E.G., Voelker, T., Thompson, C.M., Schopfer, L.W., Life without acetylcholinesterase: the implications of cholinesterase inhibitor toxicity in AChE-knockout mice (2005) Environ. Toxicol. Pharmacol., 19, pp. 463-469
  • Loewy, R.M., Kirs, V., Carvajal, G., Venturino, A., Pechén de D'Angelo, A.M., Effect of pesticide use in fruit production orchards on shallow ground water (2003) J. Environ. Sci. Health B, 38, pp. 317-325
  • Loewy, R.M., Carvajal, L.G., Novelli, M., Pechen de D'Angelo, A.M., Azinphos-methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina (2006) J. Environ. Sci. Health B, 41, pp. 869-881
  • Loewy, R.M., Monza, L.B., Kiers, V.E., Savini, M.C., Pesticide distribution in an agricultural environment in Argentina (2011) J. Environ. Sci. Health B, 46, pp. 662-670
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Mora, P., Michel, X., Narbonne, J.-F., Cholinesterase activity as potential biomarker in two bivalves (1999) Environ. Toxicol. Pharmacol., 7, pp. 253-260
  • Münzinger, A., Biomphalaria glabrata (Say), a suitable organism for a biotest (1987) Environ. Technol. Lett., 8, pp. 141-148
  • Pope, C.N., Organophosphorus pesticides: do they have all the same mechanism of toxicity? (1999) J. Toxicol. Environ. Health B, 2, pp. 161-181
  • Sanchez-Hernandez, J.C., Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination (2007) Environmental Pollution: New Research, pp. 1-45. , Nova Science Publishers, Inc., NY, USA, R.H. Plattenberg (Ed.)
  • Sanchez-Hernandez, J.C., Wheelock, C.E., Tissue distribution, isozyme abundance and sensitivity to chorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris (2009) Environ. Pollut., 157, pp. 264-272
  • Schulz, R., Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review (2004) J. Environ. Qual., 33, pp. 419-448
  • Talesa, V., Contenti, S., Mangiabene, C., Pascolini, R., Rosi, G., Principato, G.B., Propionylcholinesterase from Murex brandaris: comparison with other invertebrate cholinesterases (1990) Comp. Biochem. Physiol. C, 96, pp. 39-43
  • Timbrell, J.A., (2000) Principles of Biochemical Toxicology, , Taylor and Francis, London
  • US EPA, United States Environmental Protection Agency (2001), Interim registration eligibility decision for azinphos-methyl. Case No. 0235; van Asperen, K., A study of housefly esterases by means of a sensitive colorimetric method (1962) J. Insect Physiol., 8, pp. 401-416. , http://www.epa.gov./REDs/azinphosmethyl_ired.pdf
  • Varó, I., Navarro, J.C., Amat, F., Guilhermino, L., Characterization of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica (2002) Chemosphere, 48, pp. 563-569
  • Verrengia Guerrero, N.R., Nahabedian, D.E., Wider, E.A., Analysis of some factors that may modify the bioavailability of cadmium and lead by Biomphalaria glabrata (2000) Environ. Toxicol. Chem., 19, pp. 2762-2768
  • Vioque-Fernández, A., Alves de Almeida, E., López-Barea, J., Esterases as pesticide biomarkers in crayfish (Procambarus clarkii, Crustacea): tissue distribution, sensitivity to model compounds and recovery from inactivation (2007) Comp. Biochem Physiol. C, 145, pp. 404-412
  • Walker, C.H., Hopkin, S.P., Sibly, R.M., Peakall, D.B., (2001) Principles of Ecotoxicology, , Taylor and Francis, London
  • Wan, M.T., Szeto, S.Y., Price, P., Distribution and persistence of azinphos-methyl and parathion in chemigated cranberry bogs (1995) J. Environ. Qual., 24, pp. 589-596
  • Wheelock, C.E., Shan, G., Ottea, J., Overview of carboxylesterases and their role in the metabolism of insecticides (2005) J. Pestic. Sci., 30, pp. 75-83
  • Wheelock, C.E., Phillips, B.M., Anderson, B.S., Miller, M.J., Miller, M.J., Hammock, B.D., Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs) (2008) Rev. Environ. Contam. Toxicol., 195, pp. 117-178
  • Xuereb, B., Noury, P., Felten, V., Garric, J., Geffard, O., Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos (2007) Toxicology, 236, pp. 178-189

Citas:

---------- APA ----------
Kristoff, G., Chiny Barrionuevo, D., Cacciatore, L.C., Verrengia Guerrero, N.R. & Cochón, A.C. (2012) . In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: Analysis of enzyme, substrate and tissue dependence. Aquatic Toxicology, 112-113, 19-26.
http://dx.doi.org/10.1016/j.aquatox.2012.01.016
---------- CHICAGO ----------
Kristoff, G., Chiny Barrionuevo, D., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C. "In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: Analysis of enzyme, substrate and tissue dependence" . Aquatic Toxicology 112-113 (2012) : 19-26.
http://dx.doi.org/10.1016/j.aquatox.2012.01.016
---------- MLA ----------
Kristoff, G., Chiny Barrionuevo, D., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C. "In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: Analysis of enzyme, substrate and tissue dependence" . Aquatic Toxicology, vol. 112-113, 2012, pp. 19-26.
http://dx.doi.org/10.1016/j.aquatox.2012.01.016
---------- VANCOUVER ----------
Kristoff, G., Chiny Barrionuevo, D., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C. In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: Analysis of enzyme, substrate and tissue dependence. Aquat. Toxicol. 2012;112-113:19-26.
http://dx.doi.org/10.1016/j.aquatox.2012.01.016