Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Corticotrophin-releasing factor (CRF) is the key mediator of the central nervous system response needed to adapt to stress. If adaptation fails, hypersecretion of CRF continues and produces, via CRF type 1 receptors, symptoms pertaining to cognition, appetite, sleep and anxiety, implicating CRF as a causal factor in affective disorders. Clinical studies with CRF receptor 1 antagonists support a novel pharmacological strategy for treating stress-related disorders. Here we summarize recent information obtained on CRF receptor 1 signaling and propose the concept of a more focused pharmacological intervention based on the signaling pathways involved. Recent findings suggest that CRF activates, via the same CRF receptor 1, different signaling pathways in specific areas of the brain. This intracellular and neuroanatomical signaling specificity will facilitate the search for less pleiotropic antagonists and new chemical compounds that modulate signal transduction in a site-specific manner. © 2006 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:CRF signaling: molecular specificity for drug targeting in the CNS
Autor:Arzt, E.; Holsboer, F.
Filiación:Laboratorio de Fisiología y Biología Molecular, Departamento Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), 1428 Buenos Aires, Argentina
Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
Palabras clave:calcium ion; corticotropin releasing factor; corticotropin releasing factor receptor 1; cyclic AMP dependent protein kinase; immunoglobulin enhancer binding protein; membrane associated guanylate cyclase kinase; mitogen activated protein kinase; nitric oxide synthase; phorbol 13 acetate 12 myristate; phospholipase C; receptor subtype; adaptation; addiction; anxiety disorder; brain; cell membrane permeability; central nervous system; depression; drug targeting; hippocampus; human; hypothalamus hypophysis adrenal system; limbic cortex; mental disease; mood disorder; neuroanatomy; neuropharmacology; nonhuman; priority journal; review; signal transduction; stress; Animals; Brain; Corticotropin-Releasing Hormone; Humans; Mental Disorders; Signal Transduction; Stress; Stress, Physiological
Año:2006
Volumen:27
Número:10
Página de inicio:531
Página de fin:538
DOI: http://dx.doi.org/10.1016/j.tips.2006.08.007
Título revista:Trends in Pharmacological Sciences
Título revista abreviado:Trends Pharmacol. Sci.
ISSN:01656147
CODEN:TPHSD
CAS:calcium ion, 14127-61-8; corticotropin releasing factor, 9015-71-8; mitogen activated protein kinase, 142243-02-5; nitric oxide synthase, 125978-95-2; phorbol 13 acetate 12 myristate, 16561-29-8; phospholipase C, 9001-86-9; Corticotropin-Releasing Hormone, 9015-71-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01656147_v27_n10_p531_Arzt

Referencias:

  • Heinrichs, S.C., Koob, G.F., Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation (2004) J. Pharmacol. Exp. Ther., 311, pp. 427-440
  • Steckler, T., Holsboer, F., Corticotropin-releasing hormone receptor subtypes and emotion (1999) Biol. Psychiatry, 46, pp. 1480-1508
  • Herman, J.P., Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness (2003) Front. Neuroendocrinol., 24, pp. 151-180
  • Grammatopoulos, D.K., Chrousos, G.P., Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists (2002) Trends Endocrinol. Metab., 13, pp. 436-444
  • Dautzenberg, F.M., Hauger, R.L., The CRF peptide family and their receptors: yet more partners discovered (2002) Trends Pharmacol. Sci., 23, pp. 71-77
  • Grigoriadis, D.E., The corticotropin-releasing factor receptor: a novel target for the treatment of depression and anxiety-related disorders (2005) Expert Opin. Ther. Targets, 9, pp. 651-684
  • Merchenthaler, I., Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain (1982) Am. J. Anat., 165, pp. 385-396
  • Swanson, L.W., Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study (1983) Neuroendocrinology, 36, pp. 165-186
  • Bittencourt, J.C., Sawchenko, P.E., Do centrally administered neuropeptides access cognate receptors?: an analysis in the central corticotropin-releasing factor system (2000) J. Neurosci., 20, pp. 1142-1156
  • Chen, Y., Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF1)-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus (2000) J. Comp. Neurol., 420, pp. 305-323
  • Chalmers, D.T., Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression (1995) J. Neurosci., 15, pp. 6340-6350
  • Reul, J.M., Holsboer, F., Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression (2002) Curr. Opin. Pharmacol., 2, pp. 23-33
  • Nemeroff, C.B., Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims (1988) Arch. Gen. Psychiatry, 45, pp. 577-579
  • Nemeroff, C.B., Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients (1984) Science, 226, pp. 1342-1344
  • Holsboer, F., Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression (1984) N. Engl. J. Med., 311, p. 1127
  • Raadsheer, F.C., Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer's disease and depression (1995) Am. J. Psychiatry, 152, pp. 1372-1376
  • Zobel, A.W., Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated (2000) J. Psychiatr. Res., 34, pp. 171-181
  • Holsboer, F., The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety (1999) J. Psychiatr. Res., 33, pp. 181-214
  • Muller, M.B., Holsboer, F., Mice with mutations in the HPA-system as models for symptoms of depression (2006) Biol. Psychiatry, 59, pp. 1104-1115
  • Stenzel-Poore, M.P., Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior (1994) J. Neurosci., 14, pp. 2579-2584
  • Dirks, A., Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations (2002) Eur. J. Neurosci., 16, pp. 1751-1760
  • Smith, G.W., Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development (1998) Neuron, 20, pp. 1093-1102
  • Timpl, P., Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1 (1998) Nat. Genet., 19, pp. 162-166
  • Muller, M.B., Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress (2003) Nat. Neurosci., 6, pp. 1100-1107
  • Philips, A., Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells (1997) Mol. Cell. Biol., 17, pp. 5946-5951
  • Zhao, J., Karalis, K.P., Regulation of nuclear factor-κB by corticotropin-releasing hormone in mouse thymocytes (2002) Mol. Endocrinol., 16, pp. 2561-2570
  • Karalis, K.P., NF-κB participates in the corticotropin-releasing, hormone-induced regulation of the pituitary proopiomelanocortin gene (2004) J. Biol. Chem., 279, pp. 10837-10840
  • Lezoualc'h, F., Corticotropin-releasing hormone-mediated neuroprotection against oxidative stress is associated with the increased release of non-amyloidogenic amyloid β precursor protein and with the suppression of nuclear factor-κB (2000) Mol. Endocrinol., 14, pp. 147-159
  • Vila, G., Sonic hedgehog regulates CRH signal transduction in the adult pituitary (2005) FASEB J., 19, pp. 281-283
  • Cao, J., Corticotropin-releasing hormone (CRH) induces vascular endothelial growth factor (VEGF) release from human mast cells via the cAMP/protein kinase A/p38 MAPK pathway (2005) Mol Pharmacol
  • Wang, W., Corticotropin-releasing hormone induces proliferation and TNF-α release in cultured rat microglia via MAP kinase signalling pathways (2003) J. Neurochem., 84, pp. 189-195
  • Kovalovsky, D., Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways (2002) Mol. Endocrinol., 16, pp. 1638-1651
  • Grammatopoulos, D.K., Urocortin, but not corticotropin-releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: an effect mediated via R1α and R2β CRH receptor subtypes and stimulation of Gq-proteins (2000) Mol. Endocrinol., 14, pp. 2076-2091
  • Brar, B.K., Specificity and regulation of extracellularly regulated kinase1/2 phosphorylation through corticotropin-releasing factor (CRF) receptors 1 and 2β by the CRF/urocortin family of peptides (2004) Endocrinology, 145, pp. 1718-1729
  • Rossant, C.J., Corticotropin-releasing factor type 1 and type 2α receptors regulate phosphorylation of calcium/cyclic adenosine 3′,5′-monophosphate response element-binding protein and activation of p42/p44 mitogen-activated protein kinase (1999) Endocrinology, 140, pp. 1525-1536
  • Bayatti, N., Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons (2003) Endocrinology, 144, pp. 4051-4060
  • Cibelli, G., Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways (2001) Eur. J. Neurosci., 13, pp. 1339-1348
  • Swinny, J.D., Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro (2004) Eur. J. Neurosci., 19, pp. 1749-1758
  • Elliott-Hunt, C.R., Potential signalling pathways underlying corticotrophin-releasing hormone-mediated neuroprotection from excitotoxicity in rat hippocampus (2002) J. Neurochem., 80, pp. 416-425
  • Radulovic, M., Corticotropin-releasing factor (CRF) rapidly suppresses apoptosis by acting upstream of the activation of caspases (2003) J. Neurochem., 84, pp. 1074-1085
  • Dermitzaki, E., Corticotropin-releasing hormone induces Fas ligand production and apoptosis in PC12 cells via activation of p38 mitogen-activated protein kinase (2002) J. Biol. Chem., 277, pp. 12280-12287
  • Hoare, S.R., Conformational states of the corticotropin releasing factor 1 (CRF1) receptor: detection, and pharmacological evaluation by peptide ligands (2003) Peptides, 24, pp. 1881-1897
  • Blank, T., Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning (2003) J. Neurosci., 23, pp. 700-707
  • Liu, J.P., A comparative study of the role of adenylate cyclase in the release of adrenocorticotropin from the ovine and rat anterior pituitary (1994) Mol. Cell. Endocrinol., 101, pp. 173-181
  • Pelton, G.H., Repeated stress, like vasopressin, sensitizes the excitatory effects of corticotropin releasing factor on the acoustic startle reflex (1997) Brain Res., 778, pp. 381-387
  • Serradeil-Le Gal, C., An overview of SSR149415, a selective nonpeptide vasopressin V1b receptor antagonist for the treatment of stress-related disorders (2005) CNS Drug Rev., 11, pp. 53-68
  • Kim, E., Sheng, M., PDZ domain proteins of synapses (2004) Nat. Rev. Neurosci., 5, pp. 771-781
  • Kim, J.H., SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family (1998) Neuron, 20, pp. 683-691
  • Colledge, M., Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex (2000) Neuron, 27, pp. 107-119
  • Grewal, S.S., Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase (2000) J. Biol. Chem., 275, pp. 3722-3728
  • Thomas, G.M., Huganir, R.L., MAPK cascade signalling and synaptic plasticity (2004) Nat. Rev. Neurosci., 5, pp. 173-183
  • Menard, C., An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis (2002) Neuron, 36, pp. 597-610
  • Traverse, S., EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor (1994) Curr. Biol., 4, pp. 694-701
  • English, J.D., Sweatt, J.D., A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation (1997) J. Biol. Chem., 272, pp. 19103-19106
  • Selcher, J.C., A necessity for MAP kinase activation in mammalian spatial learning (1999) Learn. Mem., 6, pp. 478-490
  • Schafe, G.E., Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning (2000) J. Neurosci., 20, pp. 8177-8187
  • Meller, E., Region-specific effects of acute and repeated restraint stress on the phosphorylation of mitogen-activated protein kinases (2003) Brain Res., 979, pp. 57-64
  • Hao, Y., Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis (2004) J. Neurosci., 24, pp. 6590-6599
  • Einat, H., The role of the extracellular signal-regulated kinase signaling pathway in mood modulation (2003) J. Neurosci., 23, pp. 7311-7316
  • Refojo, D., Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 6183-6188
  • Cohen, P., Protein kinases-the major drug targets of the twenty-first century? (2002) Nat. Rev. Drug Discov., 1, pp. 309-315
  • Bain, J., The specificities of protein kinase inhibitors: an update (2003) Biochem. J., 371, pp. 199-204
  • Duan, W., Wong, W.S., Targeting mitogen-activated protein kinases for asthma (2006) Curr. Drug Targets, 7, pp. 691-698
  • de Kloet, E.R., Stress and the brain: from adaptation to disease (2005) Nat. Rev. Neurosci., 6, pp. 463-475

Citas:

---------- APA ----------
Arzt, E. & Holsboer, F. (2006) . CRF signaling: molecular specificity for drug targeting in the CNS. Trends in Pharmacological Sciences, 27(10), 531-538.
http://dx.doi.org/10.1016/j.tips.2006.08.007
---------- CHICAGO ----------
Arzt, E., Holsboer, F. "CRF signaling: molecular specificity for drug targeting in the CNS" . Trends in Pharmacological Sciences 27, no. 10 (2006) : 531-538.
http://dx.doi.org/10.1016/j.tips.2006.08.007
---------- MLA ----------
Arzt, E., Holsboer, F. "CRF signaling: molecular specificity for drug targeting in the CNS" . Trends in Pharmacological Sciences, vol. 27, no. 10, 2006, pp. 531-538.
http://dx.doi.org/10.1016/j.tips.2006.08.007
---------- VANCOUVER ----------
Arzt, E., Holsboer, F. CRF signaling: molecular specificity for drug targeting in the CNS. Trends Pharmacol. Sci. 2006;27(10):531-538.
http://dx.doi.org/10.1016/j.tips.2006.08.007