Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract Copyrolysis of peanut (Arachis hypogaea) shells and cassava (Manihot esculenta) starch using mixtures of different proportions was examined to improve yield of the bio-oil and its quality. Pyrolysis of the individual components was also investigated in order to quantify the improvement of the measured properties. The kinetics of pyrolysis/copyrolysis was characterized by thermogravimetrical analysis and the application of two different models: one which takes into account the deactivation of the solid, and another one which assumes a normal distribution of the activation energy. Interactions between the starch and the shells were inferred since maximum reaction rates were, in all cases, lower than the weighed average values obtained for the pyrolysis of the individual components. Furthermore, both the bio-oil yield and the water content of the liquids showed synergistic effects. A mixture composed by 75 wt% of starch and 25 wt% of peanut shells led to maximize the yield of the bio-oil (58.2 wt%), while its water content was reduced in 3.4% in comparison with the value expected from the weighed average of the individual results. On the other hand, the addition of the starch to the peanut shells led to a bio-char with less ash content. It could be more suitable for further combustion in steam boilers. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion
Autor:Gurevich Messina, L.I.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Departamento de Industrias, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2620, Buenos Aires, C1428BGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, C1033AAJ, Argentina
Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
Palabras clave:Cassava starch; Copyrolysis; Peanut shells; Waste management; Activation analysis; Activation energy; Biofuels; Boilers; Engines; Mixtures; Normal distribution; Oilseeds; Plants (botany); Reaction rates; Shells (structures); Starch; Waste incineration; Waste management; Cassava starch; Copyrolysis; Different proportions; Individual components; Kinetics of pyrolysis; Maximum reaction rate; Measured properties; Peanut shells; Pyrolysis
Año:2015
Volumen:113
Página de inicio:508
Página de fin:517
DOI: http://dx.doi.org/10.1016/j.jaap.2015.03.017
Título revista:Journal of Analytical and Applied Pyrolysis
Título revista abreviado:J Anal Appl Pyrolysis
ISSN:01652370
CODEN:JAAPD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01652370_v113_n_p508_GurevichMessina

Referencias:

  • Long, H., Li, X., Wang, H., Jia, J., Biomass resources and their bioenergy potential estimation: a review (2013) Renew. Sustain. Energy Rev., 26, pp. 344-352
  • Bonelli, P.R., Nunell, G.V., Fernandez, M.E., Buonomo, E.L., Cukierman, A.L., The potential applications of the bio-char derived from the pyrolysis of an agro-industrial waste. Effects of temperature and acid-pretreatment (2012) Energy Sources Part A Recover. Util. Environ. Effects, 34, pp. 746-755
  • Adrados, A., Lopez-Urionabarrenechea, A., Solar, J., Requies, J., De Marco, I., Cambra, J.F., Upgrading of pyrolysis vapours from biomass carbonization (2013) J. Anal. Appl. Pyrolysis, 103, pp. 293-299
  • Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K., Characterization of Canadian biomass for alternative renewable biofuel (2010) Renew. Energy, 35, pp. 1624-1631
  • Cukierman, A.L., Nunell, G.V., Fernandez, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R., Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production (2012) Invasive Species: Threats, Ecological Impact and Control Methods, pp. 1-45. , J.J. Blanco, A.T. Fernandes, Nova Publishers Inc. New York
  • Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manage., 51, pp. 969-982
  • Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading (2012) Biomass Bioenergy, 38, pp. 68-94
  • Fan, J., Kalnes, T.N., Alward, M., Klinger, J., Sadehvandi, A., Shonnard, D.R., Life cycle assessment of electricity generation using fast pyrolysis bio-oil (2011) Renew. Energy, 36, pp. 632-641
  • Jacobson, K., Maheria, K.C., Kumar Dalai, A., Bio-oil valorization: a review (2013) Renew. Sustain. Energy Rev., 23, pp. 91-106
  • Abnisa, F., Wan Daud, W.M.A., A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil (2014) Energy Convers. Manage., 87, pp. 71-85
  • Thegarid, N., Fogassy, G., Schuurman, Y., Mirodatos, C., Stefanidis, S., Iliopoulou, E.F., Kalogiannis, K., Lappas, A.A., Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units (2014) Appl. Catal. B Environ., 145, pp. 161-166
  • Aho, A., Salmi, T., Yu Murzin, D., Catalytic pyrolysis of lignocellulosic biomass (2013) The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, pp. 137-159. , K.S. Triantafyllidis, A.A. Lappas, M. Stöcker, Elsevier Inc. London
  • Cornelissen, T., Jans, M., Stals, M., Kuppens, T., Thewys, T., Janssens, G.K., Pastijn, H., Carleer, R., Flash co-pyrolysis of biomass: the influence of biopolymers (2009) J. Anal. Appl. Pyrolysis, 85, pp. 87-97
  • Wright, M.M., Daugaard, D.E., Satrio, J.A., Brown, R.C., Techno-economic analysis of biomass fast pyrolysis to transportation fuels (2010) Fuel, 89, pp. S2-S10
  • Teixeira, E.D.M., Curvelo, A.A.S., Corrêa, A.C., Marconcini, J.M., Glenn, G.M., Mattoso, L.H.C., Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid) (2012) Ind. Crops Prod., 37, pp. 61-68
  • FAOSTAT, Browse Data, Publication, Crops. Food and Agriculture Organization of the United Nations, , http://faostat3fao.org/browse/Q/QC/E
  • Jyothi, A.N., Sasikiran, K., Nambisan, B., Balagopalan, C., Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum (2005) Process Biochem., 40, pp. 3576-3579
  • Muñoz, V., Ibañez, F., Tonelli, M.L., Valetti, L., Anzuay, M.S., Fabra, A., Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina (2011) Syst. Appl. Microbiol., 34, pp. 446-452
  • Duan, F., Zhang, J.-P., Chyang, C.-S., Wang, Y.-J., Tso, J., Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation (2014) Fuel Process. Technol., 128, pp. 28-35
  • Arromdee, P., Kuprianov, V.I., Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material (2012) Appl. Energy, 97, pp. 470-482
  • Rhodes, M., (2008) Introduction to Particle Technology, , second ed. John Wiley & Sons, Inc. Chichester
  • Wang, S., Guo, X., Wang, K., Luo, Z., Influence of the interaction of components on the pyrolysis behavior of biomass (2011) J. Anal. Appl. Pyrolysis, 91, pp. 183-189
  • Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K., Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis (2008) J. Anal. Appl. Pyrolysis, 82, pp. 170-177
  • Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L., Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater (2012) Biomass Bioenergy, 44, pp. 87-95
  • Raveendran, K., Ganesh, A., Adsorption characteristics and of biomass-pyrolysis char (1998) Fuel, 77, pp. 769-781
  • Rolland-Sabaté, A., Sánchez, T., Buléon, A., Colonna, P., Jaillais, B., Ceballos, H., Dufour, D., Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources (2012) Food Hydrocolloids, 27, pp. 161-174
  • Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D., Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review (2013) Appl. Energy, 104, pp. 801-809
  • Yuan, T., Tahmasebi, A., Yu, J., Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor (2015) Bioresour. Technol., 175, pp. 333-341
  • Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sustain. Energy Rev., 38, pp. 594-608
  • Marques, P.T., Lima, A.M.F., Bianco, G., Laurindo, J.B., Borsali, R., Le Meins, J.-F., Soldi, V., Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate (2006) Polym. Degrad. Stab., 91, pp. 726-732
  • Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Slow pyrolysis of nutshells: characterization of derived chars and process kinetics (2003) Energy Sources Recover. Util. Environ. Effects, 30, pp. 767-778
  • White, J.E., Catallo, W.J., Legendre, B.L., Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies (2011) J. Anal. Appl. Pyrolysis, 91, pp. 1-33
  • Cai, J., Liu, R., New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass (2008) Bioresour. Technol., 99, pp. 2795-2799
  • García Barneto, A., Ariza Carmona, J., Martín Alfonso, J.E., Sánchez Serrano, R., Simulation of the thermogravimetry analysis of three non-wood pulps (2010) Bioresour. Technol., 101, pp. 3220-3229
  • Zhang, X., Xu, M., Sun, R., Sun, L., Study on biomass pyrolysis kinetics (2004) J. Eng. Gas Turbines Power, 128, pp. 493-496
  • Balci, S., Dogu, T., Yucel, H., Pyrolysis kinetics of lignocellulosic materials (1993) Ind. Eng. Chem. Res., 32, pp. 2573-2579
  • Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Influence of inorganic salts on the primary pyrolysis products of cellulose (2010) Bioresour. Technol., 101, pp. 4646-4655
  • Liu, X., Yu, L., Liu, H., Chen, L., Li, L., Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems (2009) Cereal Chem., 86, pp. 383-385
  • Lin, T., Goos, E., Riedel, U., A sectional approach for biomass: modelling the pyrolysis of cellulose (2013) Fuel Process. Technol., 115, pp. 246-253
  • Jiang, L., Hu, S., Sun, L., Su, S., Xu, K., He, L., Xiang, J., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass (2013) Bioresour. Technol., 146, pp. 254-260
  • Cornelissen, T., Yperman, J., Reggers, G., Schreurs, S., Carleer, R., Flash co-pyrolysis of biomass with polylactic acid. Part 1: influence on bio-oil yield and heating value (2008) Fuel, 87, pp. 1031-1041
  • Cao, J.-P., Zhao, X.-Y., Morishita, K., Wei, X.-Y., Takarada, T., Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge (2010) Bioresour. Technol., 101, pp. 7648-7652
  • Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrolysis, 86, pp. 323-330
  • Cornelissen, T., Jans, M., Yperman, J., Reggers, G., Schreurs, S., Carleer, R., Flash co-pyrolysis of biomass with polyhydroxybutyrate: part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals (2008) Fuel, 87, pp. 2523-2532
  • Kim, T.-S., Kim, J.-Y., Kim, K.-H., Lee, S., Choi, D., Choi, I.-G., Choi, J.W., The effect of storage duration on bio-oil properties (2012) J. Anal. Appl. Pyrolysis, 95, pp. 118-125
  • Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis (2007) Fuel, 86, pp. 1781-1788

Citas:

---------- APA ----------
Gurevich Messina, L.I., Bonelli, P.R. & Cukierman, A.L. (2015) . Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion. Journal of Analytical and Applied Pyrolysis, 113, 508-517.
http://dx.doi.org/10.1016/j.jaap.2015.03.017
---------- CHICAGO ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. "Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion" . Journal of Analytical and Applied Pyrolysis 113 (2015) : 508-517.
http://dx.doi.org/10.1016/j.jaap.2015.03.017
---------- MLA ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. "Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion" . Journal of Analytical and Applied Pyrolysis, vol. 113, 2015, pp. 508-517.
http://dx.doi.org/10.1016/j.jaap.2015.03.017
---------- VANCOUVER ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion. J Anal Appl Pyrolysis. 2015;113:508-517.
http://dx.doi.org/10.1016/j.jaap.2015.03.017