Artículo

Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Ba ar, E. "Wavelet entropy: A new tool for analysis of short duration brain electrical signals" (2001) Journal of Neuroscience Methods. 105(1):65-75
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials. Copyright © 2001 Elsevier Science B.V.

Registro:

Documento: Artículo
Título:Wavelet entropy: A new tool for analysis of short duration brain electrical signals
Autor:Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Ba ar, E.
Filiación:Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
Institute of Physiology, Medical University Lübeck, Ratzeburger Alle 160, D-23538 Lübeck, Germany
TÜBITAK Brain Dynamics Research Unit, Ankara, Turkey
Palabras clave:EEG, event-related potentials (ERP); Signal entropy; Time-frequency signal analysis; Visual evoked potential; Wavelet analysis; adult; article; auditory stimulation; controlled study; cortical synchronization; electroencephalogram; electroencephalography; energy; entropy; event related potential; evoked visual response; frequency analysis; human; human experiment; mathematical analysis; normal human; oscillation; priority journal; quantitative assay; signal processing; technique; time; volunteer; waveform; wavelet; Adult; Biological Clocks; Brain; Cortical Synchronization; Electroencephalography; Entropy; Evoked Potentials; Humans; Models, Neurological; Signal Processing, Computer-Assisted; Time Factors
Año:2001
Volumen:105
Número:1
Página de inicio:65
Página de fin:75
DOI: http://dx.doi.org/10.1016/S0165-0270(00)00356-3
Título revista:Journal of Neuroscience Methods
Título revista abreviado:J. Neurosci. Methods
ISSN:01650270
CODEN:JNMED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01650270_v105_n1_p65_Rosso

Referencias:

  • Abarbanel, H.D.I., (1996), Analysis of Observed Chaotic Data, New York: Springer; (1996), Aldroubi A., Unser M. (Eds.), Wavelets in Medicine and Biology, Boca Raton: CRC Press; Başar, E., EEG-brain dynamics (1980), Relation between EEG and Brain Evoked Potentials, Amsterdam: Elsevier; Başar, E., (1998), Brain Function and Oscillations (I): Brain Oscillations, Principles and Approaches, Berlin: Springer; Başar, E., (1999), Brain Function and Oscillations (II): Integrative Brain Function. Neurophysiology and Cognitive Processes, Berlin: Springer; Birbaumer, N., Elbert, T., Canavan, A.G., Rockstroh, B., Slow potentials of the cerebral cortex and behavior (1990) Physiol. Rev., 70, pp. 1-41
  • Blanco, S., Quian Quiroga, R., Rosso, O.A., Kochen, S., Time-frequency analysis of electroencephalogram series (1995) Phys. Rev. E, 51, pp. 2624-2631
  • Blanco, S., D'Attellis, C., Isaacson, S., Rosso, O.A., Sirne, R., Time-frequency analysis of electroencephalogram series (II): gabor and wavelet transform (1996) Phys. Rev. E, 54, pp. 6661-6672
  • Blanco, S., Figliola, A., Quian Quiroga, R., Rosso, O.A., Serrano, E., Time-frequency analysis of electroencephalogram series (III): wavelet packets and information cost function (1998) Phys. Rev. E, 57, pp. 932-940
  • Casdagli, M.C., Iasemedis, L.D., Savit, R.S., Gilmore, R.L., Roper, S.N., Sackellares, J.C., Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy (1997) Electroenceph. Clin. Neurophysiol., 102, pp. 98-105
  • Daubechies, I., (1992), Ten Lectures on Wavelets, Philadelphia: SIAM; Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E., Birbaumer, N., Chaos and physiology: deterministic chaos in excitable cell assemblies (1994) Physiol. Rev., 74, pp. 1-47
  • Gazzaniga, M.S., Ivry, R.B., Mangun, G.R., (1998), Cognitive Neuroscience: The Biology of the Mind, New York: WW Norton & Co; Gray, R., (1990), Entropy and Information Theory, New York: Springer; Guiasu, S., (1997), Information Theory with Applications, New York: McGraw-Hill; Iasemedis, L.D., Sackellares, J.C., The evolution with time of spatial distribution of the largest Lyapunov exponent on the human epileptic cortex (1991), pp. 49-82. , Duke D., Pritchards W. (Eds.), Measuring Chaos in Human Brain, Singapore: World Scientific; Iasemedis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J., Phase space topography and Lyapunov exponent of electrocorticograms in partial seizures (1990) Brain Topogr., 2, pp. 187-201
  • Inouye, T., Shinosaki, K., Sakamoto, H., Toi, S., Ukai, S., Iyama, A., Katzuda, Y., Hirano, M., Quantification of EEG irregularity by use of the entropy of power spectrum (1991) Electroenceph. Clin. Neurophysiol., 79, pp. 204-210
  • Inouye, T., Shinosaki, K., Imaya, A., Matsumoto, Y., Localization of activated areas and directional EEG patterns during mental arithmetic (1993) Electroenceph. Clin. Neurophysiol., 86, pp. 224-230
  • Lehnertz, K., Elger, C.E., Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity (1998) Phys. Rev. Lett., 80, pp. 5019-5022
  • Mallat, S., (1999), A Wavelet Tour of Signal Processing, second ed., San Diego: Academic Press; (1987), Niedermeyer E., Lopes da Silva F.H. (Eds.), Electroencephalography, Basic Principles, Clinical Applications, and Related Field, Baltimore: Urban & Schwarzenberg; Nunez, P.L., (1981), Electric Fields of the Brain: The Neurophysics of EEG, New York/Oxford: Oxford University Press; Nunez PL. Toward a quantitative description of large scale neocortical dynamic function and EEG. Behav Brain Sci 2000, in press; Pjin, J.P., Van Neerven, J., Noestt, A., Lopes da Silva, F.H., Chaos or noise in EEG signals: dependence on state and brain site (1991) Electroenceph. Clin. Neurophysiol., 79, pp. 371-381
  • Powell, C.E., Percival, I.C., A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems (1979) J. Phys. A: Math. Gen., 12, pp. 2053-2071
  • Quian Quiroga R., Rosso O.A., Başar E., Schürmann M. Wavelet-entropy in event-related potentials: A new method shows ordering of EEG-oscillations. Biol Cyber 2000a, in press; Quian Quiroga R., Arnhold J., Lehnertz K., Grassberger P. Kullback-Leibler and renormalised entropy: applications to EEG of epilepsy patients. Phys Rev E 2000b, in press; Rockstroh, B., Elbert, T., Canavan, A., Lutzenberger, W., Birbaumer, N., (1989), Slow Cortical Potentials and Behaviour, Baltimore: Urban & Schwarzenberg; Rosso OA, Blanco S. Characterization of dynamical evolution of electroencephalogram time series, 1999, unpublished; Sayers, B., Beagley, H.A., Riha, J., The mechanism of auditory evoked EEG response (1974) Nature, 247, pp. 481-483
  • Shannon CE. A mathematical theory of communication. Bell Syst Technol J 1948;27:379-23, 623-56

Citas:

---------- APA ----------
Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M. & Ba ar, E. (2001) . Wavelet entropy: A new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75.
http://dx.doi.org/10.1016/S0165-0270(00)00356-3
---------- CHICAGO ----------
Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., et al. "Wavelet entropy: A new tool for analysis of short duration brain electrical signals" . Journal of Neuroscience Methods 105, no. 1 (2001) : 65-75.
http://dx.doi.org/10.1016/S0165-0270(00)00356-3
---------- MLA ----------
Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., et al. "Wavelet entropy: A new tool for analysis of short duration brain electrical signals" . Journal of Neuroscience Methods, vol. 105, no. 1, 2001, pp. 65-75.
http://dx.doi.org/10.1016/S0165-0270(00)00356-3
---------- VANCOUVER ----------
Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods. 2001;105(1):65-75.
http://dx.doi.org/10.1016/S0165-0270(00)00356-3