Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel, in close contact with a transducer. Almost all works published to date have used biosensors for analyses in which a concentration-related property of the external medium is measured. A different approach is presented here; we have successfully used S. cerevisiae and a carbon dioxide electrode as the main components of a biosensor-like device, used as a proof of concept, for a system useful to characterize metabolic parameters of the microbial cells immobilized on a carbon dioxide electrode. The biosensor-like device we are presenting allows us to calculate Michaelis-Menten parameters related to the kinetics of transport and degradation of several carbohydrates (i.e., glucose, fructose, galactose, sucrose and xylose, with K m(app) of 6.0, 5.8, 0.9, 2.0, and 147 mM, respectively), and the study of the kinetics of expression of non-constitutive proteins related to the transport and degradation of galactose. © 2006 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
Autor:Martínez, M.; Hilding-Ohlsson, A.; Viale, A.A.; Cortón, E.
Filiación:Department of Biochemistry, School of Science, University of Buenos Aires, Ciudad Universitaria, Pab. 2, 1428 Buenos Aires, Argentina
CONICET, Argentina
Palabras clave:Biosensors; Cellular metabolism; Facilitated diffusion; Immobilization; Michaelis-Menten kinetics; Saccharomyces cerevisiae; fructose; galactose; glucose; sucrose; xylose; analytic method; article; biosensor; carbohydrate transport; carbon dioxide electrode; cell metabolism; controlled study; device; immobilized cell; Michaelis constant; nonhuman; priority journal; Saccharomyces cerevisiae; Biosensing Techniques; Carbohydrate Metabolism; Carbon Dioxide; Cells, Immobilized; Electrodes; Galactose; Kinetics; Membrane Transport Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Saccharomyces cerevisiae
Año:2007
Volumen:70
Número:3
Página de inicio:455
Página de fin:464
DOI: http://dx.doi.org/10.1016/j.jbbm.2006.11.001
Título revista:Journal of Biochemical and Biophysical Methods
Título revista abreviado:J. Biochem. Biophys. Methods
ISSN:0165022X
CODEN:JBBMD
CAS:fructose, 30237-26-4, 57-48-7, 7660-25-5, 77907-44-9; galactose, 26566-61-0, 50855-33-9, 59-23-4; glucose, 50-99-7, 84778-64-3; sucrose, 122880-25-5, 57-50-1; xylose, 25990-60-7, 58-86-6; Carbon Dioxide, 124-38-9; Galactose, 26566-61-0; Membrane Transport Proteins; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0165022X_v70_n3_p455_Martinez

Referencias:

  • Turner, A.P.F., Pickup, J.C., Diabetes mellitus: biosensors for research and management (1985) Biosensors, 1, pp. 85-115
  • Yang, S., Atanasov, P., Wilkins, E., Glucose biosensors based on oxygen electrode with sandwich-type membranes (1995) Ann Biomed Eng, 23, pp. 833-839
  • Matthews, D.R., Holman, R.R., Bown, E., Steemson, J., Watson, A., Hughes, S., Pen-sized digital 30-second blood glucose meter (1987) Lancet, 1, pp. 778-779
  • Alvarez-Icaza, M., Bilitewski, U., Mass production of biosensors (1993) Anal Chem, 65, pp. 525A-533A
  • Liang, J.F., Li, Y.T., Yang, V.C., Biomedical application of immobilized enzymes (2000) J Pharm Sci, 89, pp. 979-990
  • Cass, A.E.G., (1990) The practical approach series, , Oxford University Press, New York
  • Hikuma, M., Obana, H., Yasuda, T., Karube, I., Suzuki, S., A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid (1980) Anal Chim Acta, 116, pp. 61-67
  • Matsunaga, T., Karube, I., Suzuki, S., Rapid determination of nicotinic acid by immobilized Lactobacillus arabinosus (1978) Anal Chim Acta, 99, pp. 233-239
  • Mascini, M., Memoli, A., Comparison of microbial sensors based on amperometric and potentiometric electrodes (1986) Anal Chim Acta, 182, pp. 113-122
  • Cortón, E., Locascio, G., Simple flow injection analysis system for determination of added sugars in dairy products (1998) J Dairy Res, 65, pp. 675-680
  • Lei, Y., Chen, W., Mulchandani, A., Microbial Biosensors (2006) Anal Chim Acta, 568, pp. 200-210
  • Karube, I., Suzuki, M., Microbial biosensors (1990) Biosensors, a practical approach, , Cass A.E.G. (Ed), Oxford University Press
  • Turner, A.P., Ramsay, G., Higgins, I.J., Applications of electron transfer between biological systems and electrodes (1983) Biochem Soc Trans, 11, pp. 445-448
  • Ertl, P., Unterladstaetter, B., Bayer, K., Mikkelsen, S.R., Ferricyanide reduction by Escherichia coli: kinetics, mechanism, and application to the optimization of recombinant fermentations (2000) Anal Chem, 72, pp. 4957-4964
  • Ertl, P., Robello, E., Battaglini, F., Mikkelsen, S.R., Rapid antibiotic susceptibility testing via electrochemical measurement of ferricyanide reduction by Escherichia coli and Clostridium sporogenes (2000) Anal Chem, 72, pp. 4957-4964
  • APHA, (1992) Standard methods for the examination of water and wastewater, section 5210. 18th ed, , American Public Health Association Water Works Association, American Water Environment Federation, Washington, DC
  • Chan, C., Lehmann, M., Tag, K., Lung, M., Kunze, G., Riedel, K., Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate (PCS). Part I: construction and characterization of the microbial sensor (1999) Biosens Bioelectron, 14, pp. 131-138
  • Chee, G.-J., Nomura, Y., Karube, I., Biosensor for the estimation of low biochemical oxygen demand (1999) Anal Chim Acta, 379, pp. 185-191
  • Liu, J., Bjornsson, L., Mattiasson, B., Immobilized activated sludge based biosensor for BOD measurement (2000) Biosens Bioelectron, 14, pp. 883-893
  • Tan, T.C., Wu, C., BOD sensors using multi-species living or thermally killed cells of a BODSEED microbial culture (1999) Sens Actuators B Chem, 54, pp. 252-260
  • Barnett, J.A., The utilization of sugars in yeasts (1976) Advances in Carbohydrate Chemistry and Biochemistry, 32, pp. 147-149
  • Boles, E., Hollenberg, C.P., The molecular genetics of hexose transport in yeasts (1997) FEMS Microbiol Rev, 21, pp. 85-111
  • Tatsumi, H., Takagi, K., Fujita, M., Kano, K., Ikeda, T., Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier (1999) Anal Chem, 71, pp. 1753-1759
  • Gilbert, E.S., Walker, A.W., Keasling, J.D., A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion (2003) Appl Microbiol Biotechnol, 61, pp. 77-81
  • Chang, J.-S., Chou, C., Lin, Y.-C., Lin, P.-C., Ho, J.-Y., Hu, T.L., Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola (2001) Water Res, 35, pp. 2841-2850
  • Copeland, R.A., (2000) Enzymes. 2nd Ed., , Wiley-VCH, New York
  • Mikkelsen, S.R., Cortón, E., (2004) Analytical biochemistry, pp. 21-29. , Wiley Interscience, New York
  • Khanday, F.A., Saha, M., Bhat, P.J., Molecular characterization of MRG19 of Saccharomyces cerevisiae, implication in the regulation of galactose and nonfermentable carbon source utilization (2002) Eur J Biochem, 269, pp. 5840-5850
  • Cortón, E., Kocmur, S., Haim, L., Galagovsky, L.A., Potentiometric determination of CO 2 concentration in the gaseous phase: applications in different laboratories activities (2000) J Chem Educ, 77, pp. 1188-1191
  • Kocmur, S., Cortón, E., Haim, L., Locascio, G.A., Galagovsky, L.A., CO 2- potentiometric determination and electrode construction. A hands-on approach (1999) J Chem Educ, 76, pp. 1253-1255
  • Muscat, A., Beyersdorf, J., Vorlop, K.D., Poly(carbamoylsulphonate) hydrogel, a new polymer material for cell entrapment (1995) Biosens Bioelectron, 10, pp. XI-XIV
  • Rickenberg, H.V., Cohen, G.N., Buttin, G., Monod, J., Galactosidase-permease of Escherichia coli (1956) Ann Inst Pasteur (Paris), 91, pp. 829-857
  • Görts, C.P., Effect of glucose on the activity and the kinetics of the maltose-uptake system and of alpha-glucosidase in Saccharomyces cerevisiae (1969) Biochim Biophys Acta, 184, pp. 299-305
  • Gamo, F.J., Moreno, E., Lagunas, R., The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion (1995) Yeast, 11, pp. 1393-1398
  • Barnett, J.A., The utilization of sugars in yeasts (1976) Advances in carbohydrate chemistry and biochemistry, 32, pp. 151-152
  • Cirillo, V.P., Relationship between sugar structure and competition for the sugar transport system in Baker's yeast (1968) J Bacteriol, 95, pp. 603-611
  • Kotyk, A., Properties of the sugar carrier in Baker's yeast (1967) Folia Microbiol, 12, pp. 121-131
  • Reifenberger, E., Boles, E., Ciriacy, M., Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression (1997) Eur J Biochem, 245, pp. 324-333
  • Maier, A., Völker, B., Boles, E., Fuhrmann, G.F., Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters (2002) FEMS Yeast Res, 2, pp. 539-550
  • Bisson, L.F., Fraenkel, D.G., Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae (1983) Proc Natl Acad Sci U S A, 80, pp. 1730-1734
  • Tomotani, E.J., Vitolo, M., Screening of Dowex® anion-exchange resins for invertase immobilization (2004) Appl Biochem Biotechnol, 113, pp. 145-159
  • Atkin, L., Schultz, A.S., Frey, C.N., (1946) Yeast fermentation in enzymes and their role in wheat technology, , Interscience Publishers, Inc., New York
  • van Steveninck, J., Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae (1972) Biochim Biophys Acta, 274, pp. 575-583
  • van Zyl, C., Prior, B.A., Kilian, S.G., Brandt, E.V., Role of d-ribose as a cometabolite in d-xylose metabolism by Saccharomyces cerevisiae (1993) Appl Environ Microbiol, 59, pp. 1487-1494
  • Kötter, P., Ciriacy, M., Xylose fermentation by Saccharomyces cerevisiae (1993) Appl Microbiol, 12, pp. 121-131
  • Cooney, M.J., Marison, I.W., van Gulik, W.M., von Stockar, U., Calorimetric and stoichiometric analysis of growth of Kluyveromyces fragilis in continuous culture: nitrogen limitation imposed upon carbon-limited growth (1996) Appl Microbiol Biotechnol, 44, pp. 643-653
  • Koch, A.L., Microbial physiology and ecology of slow growth (1997) Microbiol Mol Biol Rev, 61, pp. 305-318
  • Özcan, S., Johnston, M., Function and regulation of yeast hexose transporters (1999) Microbiol Mol Biol Rev, 63, pp. 554-569
  • Gancedo, J.M., Yeast carbon catabolite repression (1998) Microbiol Mol Biol Rev, 62, pp. 334-361
  • Johnston, M., Flick, J.S., Pexton, T., Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae (1994) Mol Cell Biol, 14, pp. 3834-3841
  • Riedel, C., Kunze, G., Rapid physiological characterization of microorganisms by biosensor technique (1997) Microbiol Res, 152, pp. 233-237

Citas:

---------- APA ----------
Martínez, M., Hilding-Ohlsson, A., Viale, A.A. & Cortón, E. (2007) . Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. Journal of Biochemical and Biophysical Methods, 70(3), 455-464.
http://dx.doi.org/10.1016/j.jbbm.2006.11.001
---------- CHICAGO ----------
Martínez, M., Hilding-Ohlsson, A., Viale, A.A., Cortón, E. "Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism" . Journal of Biochemical and Biophysical Methods 70, no. 3 (2007) : 455-464.
http://dx.doi.org/10.1016/j.jbbm.2006.11.001
---------- MLA ----------
Martínez, M., Hilding-Ohlsson, A., Viale, A.A., Cortón, E. "Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism" . Journal of Biochemical and Biophysical Methods, vol. 70, no. 3, 2007, pp. 455-464.
http://dx.doi.org/10.1016/j.jbbm.2006.11.001
---------- VANCOUVER ----------
Martínez, M., Hilding-Ohlsson, A., Viale, A.A., Cortón, E. Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. J. Biochem. Biophys. Methods. 2007;70(3):455-464.
http://dx.doi.org/10.1016/j.jbbm.2006.11.001