Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the big challenges of the post-genomic era is identifying regulatory systems and integrating them into genetic networks. Gene expression is determined by protein-protein interactions among regulatory proteins and with RNA polymerase(s), and protein-DNA interactions of these trans-acting factors with cis-acting DNA sequences in the promoter regions of those regulated genes. Therefore, identifying these protein-DNA interactions, by means of the DNA motifs that characterize the regulatory factors operating in the transcription of a gene, becomes crucial for determining which genes participate in a regulation process, how they behave and how they are connected to build genetic networks. In this paper, we propose a hybrid promoter analysis methodology (HPAM) to discover complex promoter motifs that combines: the neural network efficiency and ability of representing imprecise and incomplete patterns; the flexibility and interpretability of fuzzy models; and the multi-objective evolutionary algorithms capability to identify optimal instances of a model by searching according to multiple criteria. We test our methodology by learning and predicting the RNA polymerase motif in prokaryotic genomes. This constitutes a special challenge due to the multiplicity of the RNA polymerase targets and its connectivity with other transcription factors, which sometimes require multiple functional binding sites even in close located regulatory regions; and the uncertainty of its motif, which allows sites with low specificity (i.e., differing from the best alignment or consensus) to still be functional. HPAM is available for public use in http://soar-tools.wustl.edu. © 2004 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:A hybrid promoter analysis methodology for prokaryotic genomes
Autor:Cotik, V.; Romero Zaliz, R.; Zwir, I.
Filiación:Departamento De Computación, Fac. De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Argentina
Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington Univ. School of Medicine, United States
Depto. De Cie. De La Comp. E I., ETS De Ing. Informática, Universidad De Granada, Spain
Palabras clave:Fuzzy sets; Gene regulation; Multi-objective evolutionary algorithms; Pattern recognition; Prokaryotic promoters; RNA polymerase; Time delay neural networks; Computational methods; DNA; Evolutionary algorithms; Fuzzy sets; Interpolation; Neural networks; Pattern recognition; Proteins; RNA; Gene regulation; Multi-objective evolutionary algorithms; Prokaryotic promoters; RNA polymerase; Time delay neural networks; Genes
Año:2005
Volumen:152
Número:1
Página de inicio:83
Página de fin:102
DOI: http://dx.doi.org/10.1016/j.fss.2004.10.016
Título revista:Fuzzy Sets and Systems
Título revista abreviado:Fuzzy Sets Syst
ISSN:01650114
CODEN:FSSYD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01650114_v152_n1_p83_Cotik

Referencias:

  • Bailey, T.L., Elkan, C., The value of prior knowledge in discovering motifs with MEME (1995) Proc. Internat. Conf. on Intelligent Systems & Molecular Biology, 3, pp. 21-29
  • Baldi, P., Brunak, S., (1998) Bioinformatics: The Machine Learning Approach, , MIT Press Cambridge, MA
  • Brenner, S., Genomics: The end of the beginning (2000) Science, 287 (5461), pp. 2173-2179
  • Coello Coello, C., Van Veldhuizen, D., Lamont, G., (2002) Evolutionary Algorithms for Solving Multi-objective Problems, , Kluwer Academic Publishers New York
  • Collado-Vides, J., Magasanik, B., Gralla, J.D., Control site location and transcriptional regulation in Escherichia coli (1991) Microbiol. Rev., 55 (3), pp. 371-394
  • Cordón, O., Herrera, F., Zwir, I., A hierarchical knowledge-based environment for linguistic modeling: Models and iterative methodology (2003) Fuzzy Sets and Systems, 138 (2), pp. 307-341
  • Cotik, V., (2004) Una Propuesta Conexionista Para el Reconocimiento y Predicción de Promotores en Secuencias de ADN de Procariotas, , Master's Thesis, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • Deb, K., (2001) Multi-objective Optimization using Evolutionary Algorithms, , Wiley New York
  • Demeler, B., Zhou, G., Neural network optimization for E. coli promoter prediction (1991) Nucl. Acids Res., 19, pp. 1593-1599
  • Gibson, M., Mjolsness, E., Computational modeling of genetic and biochemical networks (2001) Ch. Modeling the Activity of Single Genes, , The MIT Press, Cambridge, MA
  • Goldberg, D.E., (1989) Genetic Algorithms in Search Optimization and Machine Learning, , citeseer.nj.nec.com/goldberg89genetic.html, Addison-Wesley, Reading, MA
  • Goldberg, D.E., A meditation on the computational intelligence and its future (2000) Technical Report 2000019, , Department of General Engineering, University of Illinois at Urbana-Champaign
  • Gorm Pedersen, A., Engelbrecht, J., Investigations of Escherichia coli promoter sequences with artificial neural networks: New signals discovered upstream of the transcriptional startpoint (1995) Proc. Third Internat. Conf. on Intelligent Systems for Molecular Biology, 3, pp. 292-299
  • Harley, C.B., Reynolds, R.P., Analysis of E. coli promoter sequences (1987) Nucl. Acids Res., 15 (5), pp. 2343-2361
  • Hawley, D.K., McClure, R., Compilation and analysis of Escherichia coli promoter DNA sequences (1983) Nucl. Acids Res., 11 (8), pp. 2237-2255
  • Hertz, G.Z., Stormo, G.D., Identifying DNA and protein patterns with statistically significant alignments of multiple sequences (1999) Bioinformatics, 15 (7-8), pp. 563-577. , http://bioinformatics.oupjournals.org/cgi/reprint/15/7/563.pdf
  • Hirst, J.D., Sternberg, M.J.E., Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks (1992) Biochemistry, 31 (32), pp. 7211-7218
  • Huerta, A.M., Collado-Vides, J., Sigma70 promoters in Escherichia coli: Specific transcription in dense regions of overlapping promoter-like signals (2003) J. Mol. Biol., 333 (2), pp. 261-278
  • Ishihama, A., Protein-protein communication within the transcription apparatus (1993) J. Bacteriol., 175, pp. 2483-2489
  • Klir, G.J., Folger, T.A., (1988) Fuzzy Sets, Uncertainty, and Information, , Prentice-Hall International Englewood Cliffs, NJ
  • Laguna, M., Marti, R., (2003) Scatter Search: Methodology and Implementations in C, , Kluwer Academic Publishers Boston
  • Lang, K.J., Waibel, A.H., A time-delay neural network architecture for isolated word recognition (1990) Neural Networks, 3, pp. 23-43
  • Lawrence, C.E., Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment (1993) Science, 262 (5131), pp. 208-214
  • Lisser, S., Margalit, H., Compilation of E. coli mRNA promoter sequences (1993) Nucl. Acids Res., 21 (7), pp. 1507-1516
  • MacHe, N., Reczko, M., Hatzigeorgiou, A., Multistate Time-delay Neural Networks for the Recognition of Pol II Promoter Sequences, , http://www.informatik.unistuttgart.de/ipvr/bv/personen/mache/ismb/ismb. html, unpublished
  • Matthews, B.W., Comparison of the predicted and observed secondary structure of T4 Phage Lysozyme (1975) Biochim. Biophys. Acta, 405, pp. 442-451
  • Mitchell, T.M., (1997) Machine Learning, , McGraw-Hill New York
  • Mouslim, C., Latifi, T., Groisman, E.A., Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene (2003) J. Biol. Chem., 278 (50), pp. 50588-50595
  • Pedrycz, W., Bonissone, P.P., Ruspini, E.H., (1998) Handbook of Fuzzy Computation, , Institute of Physics
  • Presnell, S.R., Cohen, F.E., Artificial Neural Networks for pattern recognition in biochemical sequences (1993) Annu. Rev. Biophys. Biomol. Struct., 22, pp. 283-298
  • Ptashne, M., Gann, A., (2002) Genes and Signals, , Cold Spring Harbor Laboratory Press
  • Reese, M.G., Application of a time-delay neural network to promoter annotation in the Drosophila Melanogaster genome (2002) Comput. Chem., 26 (1), pp. 51-56
  • Ruspini, E.H., Zwir, I., Automated generation of qualitative representations of complex object by hybrid soft-computing methods (2001) Lecture Notes in Pattern Recognition, , S.K. Pal A. Pal World Scientific Company Singapore
  • Salgado, H.E.A., Regulondb (version 3.2): Transcriptional regulation and operon organization in Escherichia coli K-12 (2001) Nucl. Acids Res., 29, pp. 72-74
  • Sarker, R., Liang, K., Newton, C., A new multiobjective evolutionary algorithm (2002) Eur. J. Oper. Res., 140, pp. 12-23
  • Sugeno, M., A fuzzy-logic-based approach to qualitative modeling (1993) IEEE Trans. Fuzzy Systems, 1 (1), pp. 7-31
  • Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., Higgins, D., The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucl. Acids Res., 25 (24), pp. 4876-4882
  • Waibel, A., Phoneme recognition using time-delay neural networks (1989) IEEE Trans. Acoust. Speech Signal Process., 37 (3), pp. 328-339
  • Witten, I., Frank, E., (1999) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, , Morgan Kaufmann Los Altos, CA
  • Wu, C.H., McLarthy, J.W., (2000) Neural Networks and Genome Informatics, , Elsevier Amsterdam
  • Zitzler, E., Thiele, L., An evolutionary algorithm for multiobjective optimization: The strength Pareto approach (1998) Technical Report, 43. , citeseer.nj.nec.com/article/zitzler98evolutionary.html, Computer Engineering and Communication Networks Lab TIK, Swiss Federal Institute of Technology ETH, Gloriastrasse 35, CH-8092 Zurich, Switzerland
  • Zwir, I., Romero Zaliz, R., Ruspini, E.H., Automated biological sequence description by genetic multiobjective generalized clustering (2002) Ann. New York Acad. Sci., 980, pp. 65-82

Citas:

---------- APA ----------
Cotik, V., Romero Zaliz, R. & Zwir, I. (2005) . A hybrid promoter analysis methodology for prokaryotic genomes. Fuzzy Sets and Systems, 152(1), 83-102.
http://dx.doi.org/10.1016/j.fss.2004.10.016
---------- CHICAGO ----------
Cotik, V., Romero Zaliz, R., Zwir, I. "A hybrid promoter analysis methodology for prokaryotic genomes" . Fuzzy Sets and Systems 152, no. 1 (2005) : 83-102.
http://dx.doi.org/10.1016/j.fss.2004.10.016
---------- MLA ----------
Cotik, V., Romero Zaliz, R., Zwir, I. "A hybrid promoter analysis methodology for prokaryotic genomes" . Fuzzy Sets and Systems, vol. 152, no. 1, 2005, pp. 83-102.
http://dx.doi.org/10.1016/j.fss.2004.10.016
---------- VANCOUVER ----------
Cotik, V., Romero Zaliz, R., Zwir, I. A hybrid promoter analysis methodology for prokaryotic genomes. Fuzzy Sets Syst. 2005;152(1):83-102.
http://dx.doi.org/10.1016/j.fss.2004.10.016