Artículo

Salgueiro, J.; Lysionek, A.; Ridolfi, A.; Zubillaga, M.; Barrado, A.; Martinez-Sarrasague, M.; Goldman, C.; Boccio, J. "Nutritional and technological behavior of stabilized iron-gluconate in wheat flour" (2005) Biological Trace Element Research. 105(1-3):187-195
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Food fortification has been shown to be an effective strategy to overcome iron malnutrition. When a new iron compound is developed for this purpose, it must be evaluated from a nutritional and technological point of view before adding it into foods. In this way, we have evaluated ferrous gluconate stabilized by glycine as a new iron source to be used in wheat flour fortification. We performed biological studies in rats as well as sensory perceptions by human subjects in wheat flour fortified with this iron source. The productions of pentane as a rancidity indicator as well as the change of the sensorial properties of the biscuits made with stabilized ferrous gluconate-fortified wheat flour were negligible. Iron absorption in water from this iron source was similar to the reference standard ferrous sulfate. Nevertheless, because of the phytic acid content, iron absorption from fortified wheat flour decrease 40% for both iron sources. The addition of zinc from different sources did not modify iron absorption from ferrous sulfate and stabilized ferrous gluconate in water and wheat flour. The iron absorption mechanism as well as the biodistribution studies demonstrate that the biological behavior of this iron source does not differ significantly from the reference standard. These results demonstrate that the iron source under study has adequate properties to be used in wheat flour fortification. Nevertheless, more research is needed before considering this iron source for its massive use in food fortification. © Copyright 2005 by Humana Press Inc.

Registro:

Documento: Artículo
Título:Nutritional and technological behavior of stabilized iron-gluconate in wheat flour
Autor:Salgueiro, J.; Lysionek, A.; Ridolfi, A.; Zubillaga, M.; Barrado, A.; Martinez-Sarrasague, M.; Goldman, C.; Boccio, J.
Filiación:Stable Isotope Laboratory Applied to Biology and Medicine and Radioisotope Laboratory, Physics Department, University of Buenos Aires, Junín 956, 1113-Ciudad de Buenos Aires, Argentina
Toxicology Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, 1113-Ciudad de Buenos Aires, Argentina
Palabras clave:Bioavailability; Flour; Fortification; Human; Iron; Wheat; Zinc; ferrous gluconate; glycine; iron; pentane; phytic acid; water; zinc; animal experiment; article; bioaccumulation; controlled study; diet supplementation; flour; food; food spoilage; human; iron absorption; nonhuman; rat; sensory evaluation; standard; wheat; Animals; Biological Availability; Chromatography; Female; Ferric Compounds; Flour; Food, Fortified; Gluconates; Glycine; Iron; Iron Radioisotopes; Iron, Dietary; Male; Pentanes; Perception; Phytic Acid; Rats; Rats, Wistar; Reference Standards; Taste; Time Factors; Triticum; Zinc Sulfate; Triticum aestivum
Año:2005
Volumen:105
Número:1-3
Página de inicio:187
Página de fin:195
DOI: http://dx.doi.org/10.1385/BTER:105:1-3:187
Título revista:Biological Trace Element Research
Título revista abreviado:Biol. Trace Elem. Res.
ISSN:01634984
CODEN:BTERD
CAS:ferrous gluconate, 299-29-6; glycine, 56-40-6, 6000-43-7, 6000-44-8; iron, 14093-02-8, 53858-86-9, 7439-89-6; pentane, 109-66-0; phytic acid, 83-86-3; water, 7732-18-5; zinc, 7440-66-6; Ferric Compounds; ferric gluconate, 88088-23-7; Gluconates; gluconic acid, 526-95-4; Glycine, 56-40-6; Iron Radioisotopes; Iron, 7439-89-6; Iron, Dietary; pentane, 109-66-0; Pentanes; Phytic Acid, 83-86-3; Zinc Sulfate, 7733-02-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01634984_v105_n1-3_p187_Salgueiro

Referencias:

  • Salgueiro, J., Zubillaga, M., Lysionek, A., Zinc as an essential micronutrient: A review (2000) Nutr. Res., 20, pp. 737-755
  • DeMaeyer, E., Adiels-Tegman, M., The prevalence of anemia in the world (1985) World Health Statist. Q., 38, pp. 302-316
  • Bothwell, T., McPhail, P., Prevention of iron deficiency by food fortification (1992) Nutritional Anaemias, pp. 183-192. , S. J. Fomon and S. Zlotkin, eds., Nestlé Nutrition Workshop series 30, Raven, New York
  • (1994) Enriching Lives: Overcoming Vitamin and Mineral Malnutrition in Developing Countries, pp. 61-65. , The International Bank for Reconstruction and Development/The World Bank, Washington, DC
  • Whittaker, P., Iron and zinc interactions in humans (1998) Am. J. Clin. Nutr., 68 (SUPPL.), pp. 442S-446S
  • Sandstrom, B., Micronutrient interactions: Effects on absorption and bioavailability (2001) Br. J. Nutr., 85 (2), pp. 181-185
  • Solomons, N., Jacob, R., Studies on the bioavailability of zinc in humans: Effects of heme and nonheme iron on the absorption of zinc (1981) Am. J. Clin. Nutr., 34, pp. 475-482
  • Sandstrom, B., Davidsson, L., Cederblad, A., Oral iron, dietary ligands and zinc absorption (1985) J. Nutr., 115, pp. 411-414
  • Larsen, T., Sandstrom, B., Effect of calcium, copper, and zinc levels in a rapeseed meal diet on mineral and trace element utilization in the rat (1992) Biol. Trace Element Res., 35, pp. 167-184
  • Rossander-Hultén, L., Brune, M., Sandstrom, B., Competitive inhibition of iron absorption by manganese and zinc in humans (1991) Am J. Clin. Nutr., 54, pp. 152-156
  • Hurrel, R., Preventing iron deficiency through food fortification (1997) Nutr. Rev., 55, pp. 210-222
  • MacPhail, A., Bothwell, T., Fortification of the diet as a strategy for preventing iron deficiency (1989) Acta Paediatr. Scand., 361, pp. 114-124
  • Salgueiro, M., Zubillaga, M., Lysionek, A., Strategies to combat zinc and iron deficiency (2002) Nutr. Rev., 60, pp. 52-58
  • Boccio, J., Iyengar, V., Iron deficiency and anemia: Causes, consequences and strategies to overcome this nutritional problem (2003) Biol. Trace Element Res., 94, pp. 1-32
  • Boccio, J., Zubillaga, M., Caro, R., Bioavailability and stability of microencapsulated ferrous sulfate in fluid milk (1996) J. Nutr. Sci. Vitaminol., 42, pp. 233-239
  • Boccio, J., Salgueiro, J., Zubillaga, M., Zinc and iron interactions evaluated between different mineral sources in different nutritional matrixes (2002) Food Nutr. Bull. UN Univ., 23, pp. 195-198
  • Boccio, J., Zubillaga, M., Caro, R., Bioavailability, mechanism of absorption and toxicity of microencapsulated iron (II) sulfate. Studies in mice (1998) Biol. Trace Element Res., 62, pp. 65-73
  • Boccio, J., Zubillaga, M., Caro, R., Microencapsulated ferrous sulfate to fortify cow milk. Absorption and distribution studies in mice (1998) J. Nutr. Sci. Vitaminol., 44, pp. 381-389
  • Zubillaga, M.B., Caro, R.A., Boccio, J.R., New procedure to fortify fluid milk with iron: Metabolic and biochemical study in rats (1996) Nutr. Res., 16 (1), pp. 131-137
  • Litchfield, J.T., Wilcoxson, F., A simplified method of evaluating dose-effect experiments (1949) J. Pharmacol. Exp. Ther., 96, pp. 99-113
  • Sokal, R.R., Rohlf, F.J., (1981) Biometry, , W. H. Freeman, San Francisco
  • Salgueiro, J., Zubillaga, M., Lysionek, A., Bioavailability of BioZn-AAS™: A new zinc source. Comparative studies in rats (2000) Nutrition, 16, pp. 762-766
  • Lysionek, A., Zubillaga, M., Salgueiro, J., Stabilized ferrous gluconate as iron source for food fortification. Bioavailability and toxicity studies in rats (2003) Biol. Trace Element Res., 94 (1), pp. 73-78
  • Hurrell, R.F., Reddy, M.B., Burri, J., Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods (2002) Br. J. Nutr., 88 (2), pp. 117-123
  • Boccio, J., Salgueiro, J., Lysionek, A., Current knowledge of iron metabolism (2003) Biol. Trace Element Res., 92, pp. 189-212

Citas:

---------- APA ----------
Salgueiro, J., Lysionek, A., Ridolfi, A., Zubillaga, M., Barrado, A., Martinez-Sarrasague, M., Goldman, C.,..., Boccio, J. (2005) . Nutritional and technological behavior of stabilized iron-gluconate in wheat flour. Biological Trace Element Research, 105(1-3), 187-195.
http://dx.doi.org/10.1385/BTER:105:1-3:187
---------- CHICAGO ----------
Salgueiro, J., Lysionek, A., Ridolfi, A., Zubillaga, M., Barrado, A., Martinez-Sarrasague, M., et al. "Nutritional and technological behavior of stabilized iron-gluconate in wheat flour" . Biological Trace Element Research 105, no. 1-3 (2005) : 187-195.
http://dx.doi.org/10.1385/BTER:105:1-3:187
---------- MLA ----------
Salgueiro, J., Lysionek, A., Ridolfi, A., Zubillaga, M., Barrado, A., Martinez-Sarrasague, M., et al. "Nutritional and technological behavior of stabilized iron-gluconate in wheat flour" . Biological Trace Element Research, vol. 105, no. 1-3, 2005, pp. 187-195.
http://dx.doi.org/10.1385/BTER:105:1-3:187
---------- VANCOUVER ----------
Salgueiro, J., Lysionek, A., Ridolfi, A., Zubillaga, M., Barrado, A., Martinez-Sarrasague, M., et al. Nutritional and technological behavior of stabilized iron-gluconate in wheat flour. Biol. Trace Elem. Res. 2005;105(1-3):187-195.
http://dx.doi.org/10.1385/BTER:105:1-3:187