Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships. © 2012 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin
Autor:Ferreiro, D.N.; Boechi, L.; Estrin, D.A.; Martí, M.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 1, C1428EHA, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 4, C1428EHA, Buenos Aires, Argentina
Palabras clave:Flavohemoglobin; Molecular dynamics; Oxygen stabilization; Protein electron transfer; cytochrome b5 reductase; dioxygenase; flavohemoglobin; hemoglobin derivative; hemoprotein; leghemoglobin; ligand; oxygen; truncated hemoglobin; unclassified drug; water; article; computer simulation; crystal structure; dissociation; electron transport; enzyme active site; enzyme activity; Escherichia coli; hydrogen bond; hydrophobicity; ligand binding; oxidation reduction potential; protein function; protein structure; proton transport; structure activity relation; Biocatalysis; Catalytic Domain; Computer Simulation; Electron-Transferring Flavoproteins; Electrons; Escherichia coli; Escherichia coli Proteins; Hemoglobins; Hydrogen Bonding; Hydrophobic and Hydrophilic Interactions; Kinetics; Ligands; Models, Molecular; NAD; Nitric Oxide; Oxygen; Oxygenases; Structure-Activity Relationship; Thermodynamics; Water; Escherichia coli; Eukaryota; Prokaryota
Año:2013
Volumen:119
Página de inicio:75
Página de fin:84
DOI: http://dx.doi.org/10.1016/j.jinorgbio.2012.10.015
Título revista:Journal of Inorganic Biochemistry
Título revista abreviado:J. Inorg. Biochem.
ISSN:01620134
CODEN:JIBID
CAS:cytochrome b5 reductase, 9032-25-1, 9047-21-6; dioxygenase, 37292-90-3; leghemoglobin, 52365-25-0, 53096-11-0; oxygen, 7782-44-7; water, 7732-18-5; Electron-Transferring Flavoproteins; Escherichia coli Proteins; Hemoglobins; Ligands; NAD, 53-84-9; Nitric Oxide, 10102-43-9; Oxygen, 7782-44-7; Oxygenases, 1.13.-; Water, 7732-18-5; nitric oxide dioxygenase, 1.14.13.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01620134_v119_n_p75_Ferreiro

Referencias:

  • Bonamore, A., Boffi, A., (2008) IUBMB Life, 60, pp. 19-28
  • Ilari, A., Boffi, A., (2008) Meth. Enzymol., 436, pp. 187-202
  • Vinogradov, S.N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., Vanfleteren, J.R., (2006) BMC Evol. Biol., 6, p. 31
  • Vinogradov, S.N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Guertin, M., Gough, J., Dewilde, S., Vanfleteren, J.R., (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 11385-11389
  • Baron, R., McCammon, J.A., Mattevi, A., (2009) Curr. Opin. Struct. Biol., 19, pp. 672-679
  • Gardner, A.M., Gardner, P.R., (2002) J. Biol. Chem., 277, pp. 8166-8171
  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 5902-5907
  • Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., (2006) Proteins, 64, pp. 457-464
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Lama, A., Pawaria, S., Bidon-Chanal, A., Anand, A., Gelpí, J.L., Arya, S., Martí, M., Dikshit, K.L., (2009) J. Biol. Chem., 284, pp. 14457-14468
  • Helmick, R.A., Fletcher, A.E., Gardner, A.M., Gessner, C.R., Hvitved, A.N., Gustin, M.C., Gardner, P.R., (2005) Antimicrob. Agents Chemother., 49, pp. 1837-1843
  • El Hammi, E., Warkentin, E., Demmer, U., Limam, F., Marzouki, N.M., Ermler, U., Baciou, L., (2011) Biochemistry, 50, pp. 1255-1264
  • De Marinis, E., Casella, L., Ciaccio, C., Coletta, M., Visca, P., Ascenzi, P., (2009) IUBMB Life, 61, pp. 62-73
  • Yukl, E.T., De Vries, S., Moënne-Loccoz, P., (2009) J. Am. Chem. Soc., 131, pp. 7234-7235
  • Gardner, P.R., Gardner, A.M., Brashear, W.T., Suzuki, T., Hvitved, A.N., Setchell, K.D.R., Olson, J.S., (2006) J. Inorg. Biochem., 100, pp. 542-550
  • Smagghe, B.J., Trent III, J.T., Hargrove, M.S., (2008) PLoS One, 3, p. 2039
  • Martí, M.A., Bidon-Chanal, A., Crespo, A., Yeh, S.-R., Guallar, V., Luque, F.J., Estrin, D.A., (2008) J. Am. Chem. Soc., 130, pp. 1688-1693
  • Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., Olson, J.S., (2000) J. Biol. Chem., 275, pp. 12581-12589
  • Gardner, P.R., Gardner, A.M., Martin, L.A., Dou, Y., Li, T., Olson, J.S., Zhu, H., Riggs, A.F., (2000) J. Biol. Chem., 275, pp. 31581-31587
  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., (2001) EMBO J., 20, pp. 3902-3909
  • Brunori, M., Gibson, Q.H., (2001) EMBO Rep., 2, pp. 674-679
  • Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., Bolognesi, M., (2004) J. Biol. Chem., 279, pp. 21520-21525
  • Scott, E.E., Gibson, Q.H., Olson, J.S., (2001) J. Biol. Chem., 276, pp. 5177-5188
  • Elber, R., (2010) Curr. Opin. Struct. Biol., 20, pp. 162-167
  • Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, D.A., (2008) Proteins, 73, pp. 372-379
  • Boechi, L., Mañez, P.A., Luque, F.J., Marti, M.A., Estrin, D.A., (2010) Proteins, 78, pp. 962-970
  • Schoenborn, B.P., (1969) J. Mol. Biol., 45, pp. 297-303
  • Ilari, A., Bonamore, A., Farina, A., Johnson, K.A., Boffi, A., (2002) J. Biol. Chem., 277, pp. 23725-23732
  • Ermler, U., Siddiqui, R.A., Cramm, R., Friedrich, B., (1995) EMBO J., 14, pp. 6067-6077
  • Mukai, M., Mills, C.E., Poole, R.K., Yeh, S.R., (2001) J. Biol. Chem., 276, pp. 7272-7277
  • Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., (1999) Proc. Natl. Acad. Sci. U. S. A., 96, pp. 11223-11228
  • Phillips, G.N., Teodoro, M.L., Li, T., Smith, B., Olson, J.S., (1999) J. Phys. Chem. B, 103, pp. 8817-8829
  • Karow, D.S., Pan, D., Tran, R., Pellicena, P., Presley, A., Mathies, R.A., Marletta, M.A., (2004) Biochemistry, 43, pp. 10203-10211
  • Capece, L., Estrin, D.A., Marti, M.A., (2008) Biochemistry, 47, pp. 9416-9427
  • Xiong, P., Nocek, J.M., Vura-Weis, J., Lockard, J.V., Wasielewski, M.R., Hoffman, B.M., (2010) Science, 330, pp. 1075-1078
  • Nocek, J.M., Knutson, A.K., Xiong, P., Co, N.P., Hoffman, B.M., (2010) J. Am. Chem. Soc., 132, pp. 6165-6175
  • Wheeler, K.E., Nocek, J.M., Cull, D.A., Yatsunyk, L.A., Rosenzweig, A.C., Hoffman, B.M., (2007) J. Am. Chem. Soc., 129, pp. 3906-3917
  • Case, D.A., (2010) AMBER 11, , University of California San Francisco
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., (2006) Proteins, 65, pp. 712-725
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., González Lebrero, M.C., Estrin, D.A., (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., (2008) Meth. Enzymol., 437, pp. 477-498
  • Bewley, M.C., Marohnic, C.C., Barber, M.J., (2001) Biochemistry, 40, pp. 13574-13582
  • Cohen, J., Olsen, K.W., Schulten, K., (2008) Meth. Enzymol., 437, pp. 439-457
  • Forti, F., Boechi, L., Estrin, D.A., Marti, M.A., (2011) J. Comput. Chem., 32, pp. 2219-2231
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
  • Crespo, A., Martí, M.A., Roitberg, A.E., Amzel, L.M., Estrin, D.A., (2006) J. Am. Chem. Soc., 128, pp. 12817-12828
  • Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
  • Martí, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.-R., Estrin, D.A., Marti, M.A., (2010) J. Biol. Inorg. Chem., 15, pp. 811-823
  • Lewis-Ballester, A., Batabyal, D., Egawa, T., Lu, C., Lin, Y., Marti, M.A., Capece, L., Yeh, S.-R., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 17371-17376
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Martí, M.A., Capece, L., Bikiel, D.E., Falcone, B., Estrin, D.A., (2007) Proteins, 68, pp. 480-487
  • Arroyo Mañez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., (2011) Biochemistry, 50, pp. 3946-3956
  • Martí, M.A., Bikiel, D.E., Crespo, A., Nardini, M., Bolognesi, M., Estrin, D.A., (2006) Proteins, 62, pp. 641-648
  • Marcus, R.A., (1956) J. Chem. Phys., 24, pp. 966-978
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., (1992) Science, 258, pp. 1740-1741
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., (1991) Science, 252, pp. 1285-1288
  • Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., (2010) Chemphyschem, 11, pp. 1225-1235
  • Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Van Amsterdam, I.M.C., Ubbink, M., Einsle, O., Messerschmidt, A., Merli, A., Cavazzini, D., Rossi, G.L., Canters, G.W., (2002) Nat. Struct. Biol., 9, pp. 48-52
  • Smulevich, G., Feis, A., Howes, B.D., (2005) Acc. Chem. Res., 38, pp. 433-440
  • Bonamore, A., Gentili, P., Ilari, A., Schininà, M.E., Boffi, A., (2003) J. Biol. Chem., 278, pp. 22272-22277
  • Liang, Z.-X., Kurnikov, I.V., Nocek, J.M., Mauk, A.G., Beratan, D.N., Hoffman, B.M., (2004) J. Am. Chem. Soc., 126, pp. 2785-2798
  • Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., Dutton, P.L., (1992) Nature, 355, pp. 796-802
  • Bonamore, A., Farina, A., Gattoni, M., Schininà, M.E., Bellelli, A., Boffi, A., (2003) Biochemistry, 42, pp. 5792-5801
  • Dikshit, K.L., Orii, Y., Navani, N., Patel, S., Huang, H.Y., Stark, B.C., Webster, D.A., (1998) Arch. Biochem. Biophys., 349, pp. 161-166
  • Hayashi, T., Stuchebrukhov, A.A., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 19157-19162
  • De La Lande, A., Martí, S., Parisel, O., Moliner, V., (2007) J. Am. Chem. Soc., 129, pp. 11700-11707
  • De La Lande, A., Babcock, N.S., Rezác, J., Sanders, B.C., Salahub, D.R., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 11799-11804
  • Jasaitis, A., Johansson, M.P., Wikström, M., Vos, M.H., Verkhovsky, M.I., (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 20811-20814
  • Miyashita, O., Okamura, M.Y., Onuchic, J.N., (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 3558-3563

Citas:

---------- APA ----------
Ferreiro, D.N., Boechi, L., Estrin, D.A. & Martí, M.A. (2013) . The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin. Journal of Inorganic Biochemistry, 119, 75-84.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.015
---------- CHICAGO ----------
Ferreiro, D.N., Boechi, L., Estrin, D.A., Martí, M.A. "The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin" . Journal of Inorganic Biochemistry 119 (2013) : 75-84.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.015
---------- MLA ----------
Ferreiro, D.N., Boechi, L., Estrin, D.A., Martí, M.A. "The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin" . Journal of Inorganic Biochemistry, vol. 119, 2013, pp. 75-84.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.015
---------- VANCOUVER ----------
Ferreiro, D.N., Boechi, L., Estrin, D.A., Martí, M.A. The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin. J. Inorg. Biochem. 2013;119:75-84.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.015