Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The reactivity of coordinated nitroxyl (HNO) has been explored with the [FeII(CN)5HNO]3 - complex in aqueous medium, pH 6. We discuss essential biorelevant issues as the thermal and photochemical decompositions, the reactivity toward HNO dissociation, the electrochemical behavior, and the reactions with oxidizing and reducing agents. The spontaneous decomposition in the absence of light yielded a two-electron oxidized species, the nitroprusside anion, [FeII(CN)5NO]2-, and a negligible quantity of N2O, with kobs ≈ 5 × 10- 7 s- 1, at 25.0 °C. The value of kobs represents an upper limit for HNO release, comparable to values reported for other structurally related L ligands in the [FeII(CN) 5L]n- series. These results reveal that the FeN bond is strong, suggesting a significant σ-π interaction, as already postulated for other HNO-complexes. The [FeII(CN)5HNO]3- ion showed a quasi-reversible oxidation wave at 0.32 V (vs normal hydrogen electrode), corresponding to the [FeII(CN)5HNO] 3-/[FeII(CN)5NO]3-,H+ redox couple. Hexacyanoferrate(III), methylviologen and the nitroprusside ion have been selected as potential oxidants. Only the first reactant achieved a complete oxidation process, initiated by a proton-coupled electron transfer reaction at the HNO ligand, with nitroprusside as a final oxidation product. Dithionite acted as a reductant of [FeII(CN)5HNO] 3-, in a 4-electron process, giving NH3. The high stability of bound HNO may resemble the properties in related Fe(II) centers of redox active enzymes. The very minor release of N2O shows that the redox conversions may evolve without disruption of the FeN bonds, under competitive conditions with the dissociation of HNO. © 2012 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution
Autor:Montenegro, A.C.; Bari, S.E.; Olabe, J.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Palabras clave:Nitrosyl hydride; Nitroxyl; Pentacyanoferrate; dithionite; ferricyanide; ferrous ion; iron; nitrogen; nitrogen derivative; nitroprusside sodium; nitrosyl hydride; paraquat; unclassified drug; aqueous solution; article; chemical bond; chemical reaction; controlled study; decomposition; dissociation; electrochemistry; electron transport; nitrosylation; oxidation; pH; photochemistry; synthesis; thermodynamics; Coordination Complexes; Dithionite; Electrochemistry; Ferricyanides; Ferrous Compounds; Kinetics; Nitrogen Oxides; Nitroprusside; Oxidants; Oxidation-Reduction; Paraquat; Photochemical Processes; Reducing Agents; Solutions; Spectrophotometry, Ultraviolet; Kobus
Año:2013
Volumen:118
Página de inicio:108
Página de fin:114
DOI: http://dx.doi.org/10.1016/j.jinorgbio.2012.10.009
Título revista:Journal of Inorganic Biochemistry
Título revista abreviado:J. Inorg. Biochem.
ISSN:01620134
CODEN:JIBID
CAS:dithionite, 14844-07-6; ferricyanide, 13408-62-3, 5683-74-9; ferrous ion, 15438-31-0; iron, 14093-02-8, 53858-86-9, 7439-89-6; nitrogen, 7727-37-9; nitroprusside sodium, 14402-89-2, 15078-28-1; paraquat, 1910-42-5, 3240-78-6, 4685-14-7; Coordination Complexes; Dithionite, 14844-07-6; Ferricyanides; Ferrous Compounds; Nitrogen Oxides; Nitroprusside, 15078-28-1; Oxidants; Paraquat, 4685-14-7; Reducing Agents; Solutions; hexacyanoferrate III, 13408-62-3; nitroxyl, 14332-28-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01620134_v118_n_p108_Montenegro

Referencias:

  • Ignarro, L.J., (2000) Nitric Oxide: Biology and Pathobiology, , Academic Press San Diego
  • Hill, B.G., Dranka, B.P., Bailey, S.M., Lancaster, Jr.J.R., Darley-Usmar, V.M., (2010) J. Biol. Chem., 285, pp. 19699-19704
  • Flores-Santana, W., Salmon, D.J., Donzelli, S., Switzer, C.H., Basudhar, D., Ridnour, L., Cheng, R., Wink, D.A., (2011) Antioxid. Redox Signal., 14, pp. 1659-1674
  • Kumar, M.R., Fukuto, J.M., Miranda, K.M., Farmer, P.J., (2010) Inorg. Chem., 49, pp. 6283-6292
  • Fukuto, J.M., Switzer, C.H., Miranda, K.M., Wink, D.A., (2005) Annu. Rev. Pharmacol. Toxicol., 45, pp. 335-355
  • Bartberger, M.D., Fukuto, J.M., Houk, K.N., (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 2194-2198
  • Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 7340-7345
  • Shafirovich, V., Lymar, S.V., (2003) J. Am. Chem. Soc., 125, pp. 6547-6552
  • Lymar, S.V., Shafirovich, V., Poskrebyshev, G.A., (2005) Inorg. Chem., 44, pp. 5212-5221
  • Poskrebyshev, G.A., Shafirovich, V., Lymar, S.V., (2004) J. Am. Chem. Soc., 126, pp. 891-899
  • Rusche, K.M., Spiering, M.M., Marletta, M.A., (1998) Biochemistry, 37, pp. 15503-15512
  • Adak, S., Wang, Q., Stuehr, D.J., (2000) J. Biol. Chem., 275, pp. 33554-33561
  • Kirsch, M., Buscher, A.M., Aker, S., Schulz, R., De Groot, H., (2009) Org. Biomol. Chem., 7, pp. 1954-1962
  • Donzelli, S., Espey, M.G., Flores-Santana, W., Switzer, C.H., Yeh, G.C., Jinming Huang, S., Stuehr, D.J., Wink, D.A., (2008) Free Radic. Biol. Med., 45, pp. 578-584
  • Woodward, J.J., Nejatyjahromy, Y., Britt, R.D., Marletta, M.A., (2010) J. Am. Chem. Soc., 132, pp. 5105-5113
  • Averill, B.A., (1996) Chem. Rev., 96, pp. 2951-2964
  • Wasser, I.M., De Vries, S., Moënne-Loccoz, P., Schröder, I., Karlin, K.D., (2002) Chem. Rev., 102, pp. 1201-1234
  • Daiber, A., Shoun, H., Ullrich, V., (2005) J. Inorg. Biochem., 99, pp. 185-193
  • Upadhyay, A.K., Hooper, A.B., Hendrich, M.P., (2006) J. Am. Chem. Soc., 128, pp. 4330-4337
  • Miranda, K.M., Paolocci, N., Katori, T., Thomas, D.D., Ford, E., Bartberger, M.D., Espey, M.G., Wink, D.A., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 9196-9201
  • Andrews, K.L., Irvine, J.C., Tare, M., Apostolopoulos, J., Favaloro, J.L., Triggle, C.R., Kemp-Harper, B.K., (2009) Br. J. Pharmacol., 157, pp. 540-550
  • Switzer, C.H., Flores-Santana, W., Mancardi, D., Donzelli, S., Basudhar, D., Ridnour, L.A., Miranda, K.M., Wink, D.A., (2009) Biochim. Biophys. Acta, 1787, pp. 835-840
  • Miller, T.W., Cherney, M.M., Lee, A.J., Francoleon, N.E., Farmer, P.J., Bruce King, S., Hobbs, A.J., Fukuto, J.M., (2009) J. Biol. Chem., 284, pp. 21788-21796
  • Farmer, P.J., Sulc, F., (2005) J. Inorg. Biochem., 99, pp. 166-184
  • Sellmann, D., Gottschalk-Gaudig, T., Haussinger, D., Heinemann, F.W., Hess, B.A., (2001) Chem. Eur. J., 7, pp. 2099-2103
  • Marchenko, A.V., Vedernikov, A.N., Dye, D.F., Pink, M., Zaleski, J.M., Caulton, K.G., (2002) Inorg. Chem., 41, pp. 4087-4089
  • Marchenko, A.V., Vedernikov, A.N., Dye, D.F., Pink, M., Zaleski, J.M., Caulton, K.G., (2004) Inorg. Chem., 43, pp. 351-360
  • Lee, J., Richter-Addo, G.B., (2004) J. Inorg. Biochem., 98, pp. 1247-1250
  • Grundy, K.R., Reed, C.A., Roper, W.R., (1970) J. Chem. Soc. D, pp. 1501-1502
  • Wilson, R.D., Ibers, J.A., (1979) Inorg. Chem., 18, pp. 336-343
  • Melenkivitz, R., Southern, J.S., Hillhouse, G.L., Concolino, T.E., Liable-Sands, L.M., Rheingold, A.L., (2002) J. Am. Chem. Soc., 124, pp. 12068-12069
  • Southern, J.S., Green, M.T., Hillhouse, G.L., Guzei, I.A., Rheingold, A.L., (2001) Inorg. Chem., 40, pp. 6039-6046
  • Southern, J.S., Hillhouse, G.L., Rheingold, A.L., (1997) J. Am. Chem. Soc., 119, pp. 12406-12407
  • Hannibal, L., Smith, C.A., Jacobsen, D.W., Brasch, N.E., (2007) Angew. Chem., 119, pp. 5232-5235. , (Angew. Chem. Int. Ed. 46 (2007) 5140 -5143)
  • Scheidt, W.R., Hoard, J.L., (1973) J. Am. Chem. Soc., 95, pp. 8281-8288
  • Wolak, M., Zahl, A., Schneppensieper, T., Stochel, G., Van Eldik, R., (2001) J. Am. Chem. Soc., 123, pp. 9780-9791
  • Snyder, D.A., Weaver, D.L., (1970) Inorg. Chem., 9, pp. 2760-2767
  • Clarkson, S.G., Basolo, F., (1973) Inorg. Chem., 12, pp. 1528-1534
  • Ardon, M., Cohen, S., (1993) Inorg. Chem., 32, pp. 3241-3243
  • Levina, A., Turner, P., Lay, P.A., (2003) Inorg. Chem., 42, pp. 5392-5398
  • Song, W., Ellern, A., Bakac, A., (2008) Inorg. Chem., 47, pp. 8405-8411
  • Peterson, E.S., Larsen, R.D., Abbot, E.H., (1988) Inorg. Chem., 27, pp. 3514-3518
  • Wanat, A., Schneppensieper, T., Stochel, G., Van Eldik, R., Bill, E., Wieghardt, K., (2002) Inorg. Chem., 41, pp. 4-10
  • Brown, C.A., Pavlovsky, M.A., Westre, T.E., Zhang, Y., Hedman, B., Hodgson, K.O., Solomon, E.I., (1995) J. Am. Chem. Soc., 117, pp. 715-732
  • Pellegrino, J., Bari, S.E., Bikiel, D.E., Doctorovich, F., (2010) J. Am. Chem. Soc., 132, pp. 989-995
  • Serres, R.G., Grapperhaus, C.A., Bothe, E., Bill, E., Weyhermüller, T., Neese, F., Wieghardt, K., (2004) J. Am. Chem. Soc., 126, pp. 5138-5153
  • Patra, A.K., Dube, K.S., Sanders, B.C., Papaefthymiou, G.C., Conradie, J., Ghosho, A., Harrop, T.C., (2012) Chem. Sci., 3, pp. 364-369
  • Lin, R., Farmer, P.J., (2000) J. Am. Chem. Soc., 122, pp. 2393-2394
  • Immoos, C.E., Chou, J., Bayachou, M., Blair, E., Greaves, J., Farmer, P.J., (2004) J. Am. Chem. Soc., 126, pp. 4934-4942
  • Sulc, F., Immoos, C.E., Pervitsky, D., Farmer, P.J., (2004) J. Am. Chem. Soc., 126, pp. 1096-1101
  • Sulc, F., Fleischer, E., Farmer, P.J., Ma, D., La Mar, G.N., (2003) J. Biol. Inorg. Chem., 8, pp. 348-352
  • Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., Bari, S.E., Olabe, J.A., (2009) Angew. Chem. Int. Ed Engl., 48, pp. 4213-4216
  • Lymar, S.V., Shafirovich, V., (2007) J. Phys. Chem. B, 111, pp. 6861-6867
  • McKenna, C.E., Gutheil, W.G., Song, W., (1991) Biochim. Biophys. Acta, 1075, pp. 109-117
  • Scaife, W.J., Wilkins, R.G., (1980) Inorg. Chem., 19, pp. 3244-3247
  • Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, pp. 893-902
  • Roncaroli, F., Olabe, J.A., Van Eldik, R., (2002) Inorg. Chem., 41, pp. 5417-5425
  • Morando, P.J., Bruyere, V.I.E., Blesa, M.A., (1983) Transit. Met. Chem., 8, pp. 99-102
  • Weatherburn, M.W., (1967) Anal. Chem., 39, pp. 971-974
  • Cheney, R.P., Simic, M.G., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, pp. 2187-2192
  • Masek, J., Maslova, E., Collect (1974) Czech. Chem. Commun., 39, pp. 2141-2160
  • Bradic, Z., Pribanic, M., Asperger, S., (1975) JCS Dalton, pp. 353-356
  • Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, pp. 6822-6823
  • Yang, L., Fang, W., Zhang, Y., (2012) Chem. Commun., 48, pp. 3842-3844
  • Alexander, J.J., Gray, H.B., (1968) J. Am. Chem. Soc., 90, pp. 4260-4271
  • Gray, H.B., Beach, N.A., (1963) J. Am. Chem. Soc., 85, pp. 2922-2927
  • Pervitsky, D., Immoos, C., Veer, W., Farmer, P.J., (2007) J. Am. Chem. Soc., 129, pp. 9590-9591
  • Kunkely, H., Vogler, A., (1998) J. Photochem. Photobiol., 114, pp. 197-199
  • Balzani, V., Carasiti, V., (1970) Photochemistry of Coordination Compounds, , Academic Press
  • Bard, A.J., Faulkner, L.R., (1980) J. Electrochemical Methods, Fundamentals and Applications, , Wiley & Sons, Inc. New York
  • Toma, H.E., Creutz, C., (1977) Inorg. Chem., 16, pp. 545-550
  • Hrepic, N.V., Malin, J.M., (1979) Inorg. Chem., 18, pp. 409-413
  • Toma, H.E., Malin, J.M., (1975) J. Am. Chem. Soc., 97, pp. 288-293
  • Metelsky, P.D., Swaddle, T.W., (1999) Inorg. Chem., 38, pp. 301-307
  • Zahl, A., Van Eldik, R., Swaddle, T.W., (2002) Inorg. Chem., 41, pp. 757-764
  • Wink, D.A., Feelisch, M., Fukuto, J., Chistodoulou, D., Jourd'Heuil, D., Grisham, M.B., Vodovotz, Y., Mitchell, J.B., (1998) Arch. Biochem. Biophys., 351, pp. 66-74
  • Roncaroli, F., Videla, M., Slep, L.D., Olabe, J.A., (2007) Coord. Chem. Rev., 251, pp. 1903-1930
  • Toma, H.E., Malin, J.M., (1974) Inorg. Chem., 13, pp. 1772-1774
  • Toma, H.E., (1975) Inorg. Chim. Acta, 15, pp. 205-211
  • Ngo, T.T., Phan, A.P.H., Yam, C.F., Lenhoff, H.M., (1982) Anal. Chem., 54, pp. 46-49
  • Pinnell, D., Jordan, R.B., (1979) Inorg. Chem., 18, pp. 3191-3194
  • Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc., 126, pp. 13432-13442
  • Toma, H.E., Moroi, N.M., Iha, N.Y., (1982) An. Acad. Brasil. Cienc., 54, pp. 315-316
  • Legros, J., (1964) J. Chim. Phys. Phys. Chim. Biol., 62, pp. 909-922
  • Roncaroli, F., Olabe, J.A., Van Eldik, R., (2003) Inorg. Chem., 42, pp. 4179-4189
  • Toma, H.E., Malin, J.M., Giesbrecht, E., (1973) Inorg. Chem., 12, pp. 2084-2089
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 1039-1045

Citas:

---------- APA ----------
Montenegro, A.C., Bari, S.E. & Olabe, J.A. (2013) . Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution. Journal of Inorganic Biochemistry, 118, 108-114.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.009
---------- CHICAGO ----------
Montenegro, A.C., Bari, S.E., Olabe, J.A. "Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution" . Journal of Inorganic Biochemistry 118 (2013) : 108-114.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.009
---------- MLA ----------
Montenegro, A.C., Bari, S.E., Olabe, J.A. "Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution" . Journal of Inorganic Biochemistry, vol. 118, 2013, pp. 108-114.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.009
---------- VANCOUVER ----------
Montenegro, A.C., Bari, S.E., Olabe, J.A. Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution. J. Inorg. Biochem. 2013;118:108-114.
http://dx.doi.org/10.1016/j.jinorgbio.2012.10.009