Artículo

Bari, S.E.; Amorebieta, V.T.; Gutiérrez, M.M.; Olabe, J.A.; Doctorovich, F. "Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds" (2010) Journal of Inorganic Biochemistry. 104(1):30-36
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([FeIII(TEPyP)]5+), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([FeIII(TPPS)]3-), and microperoxidase 11 ([FeIII(MP11)]) were studied for different [FeIII(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N2 and N2O were found as gaseous, nitrogen-containing oxidation products, while NH3 was the unique reduced species detected. Different N2/N2O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [FeIII(TEPyP)]5+ and [FeIII(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [FeIII(TPPS)]3- led to the well characterized soluble intermediate, [FeII(TPPS)NO]4-. Free-radical formation was only evidenced for [FeIII(TEPyP)]5+, as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the FeII/FeIII redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO2- revealed either that no HAO-like activity was operative under our reaction conditions, or that NO2-, if formed, was consumed in the reaction milieu. © 2009 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds
Autor:Bari, S.E.; Amorebieta, V.T.; Gutiérrez, M.M.; Olabe, J.A.; Doctorovich, F.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
Palabras clave:Catalysis; Hydroxylamine; Iron(III) microperoxidase 11; Iron(III) porphyrinates; Nitrogen metabolism; ammonia; ferric ion; ferrous ion; free radical; hydroxylamine; iron; nitrogen; nitrous oxide; peroxidase; porphyrin derivative; anaerobic metabolism; article; catalysis; chemical reaction; controlled study; kinetics; oxidation reduction potential; pH; Catalysis; Hydroxylamine; Metalloporphyrins; Nitric Oxide; Peroxidases; Pyridines; Solubility; Water
Año:2010
Volumen:104
Número:1
Página de inicio:30
Página de fin:36
DOI: http://dx.doi.org/10.1016/j.jinorgbio.2009.09.024
Título revista:Journal of Inorganic Biochemistry
Título revista abreviado:J. Inorg. Biochem.
ISSN:01620134
CODEN:JIBID
CAS:ammonia, 14798-03-9, 51847-23-5, 7664-41-7; ferric ion, 20074-52-6; ferrous ion, 15438-31-0; hydroxylamine, 7803-49-8; iron, 14093-02-8, 53858-86-9, 7439-89-6; nitrogen, 7727-37-9; nitrous oxide, 10024-97-2; peroxidase, 9003-99-0; Hydroxylamine, 7803-49-8; Metalloporphyrins; Nitric Oxide, 10102-43-9; Peroxidases, 1.11.1.-; Pyridines; Water, 7732-18-5; iron(III)-tetrakis(p-sulfonatophenyl)porphyrin; microperoxidase, 1.11.1.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01620134_v104_n1_p30_Bari

Referencias:

  • Hollocher, T.C., Hibbs Jr., J.B., (1996) Methods in Nitric Oxide Research, pp. 119-146. , Feelisch M., and Stamler J.S. (Eds), Wiley, Chichester, England (Chapter 8)
  • Averill, B.A., (1996) Chem. Rev., 96, pp. 2951-2964
  • Barley, M.H., Takeuchi, K.J., Meyer, T., (1986) J. Am. Chem. Soc., 108, pp. 5876-5885
  • de Groot, M.T., Merkx, M., Koper, M.T.M., (2007) CR Chimie, 10, pp. 1-7
  • Coia, G.M., Demadis, K.D., Meyer, T.J., (2000) Inorg. Chem., 39, pp. 2212-2223
  • Saha, B., Stanbury, D.M., (2001) Inorg. Chem., 40, pp. 5139-5146
  • Wieghardt, K., (1984) Adv. Inorg. Bioinorg. Mech., 3, pp. 213-274
  • Bonner, F.T., Dzelzkalns, L.S., Bonucci, J.A., (1978) Inorg. Chem., 17, pp. 2487-2494
  • Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc., 126, pp. 13432-13442
  • Bazylinski, D.A., Arkowitz, R.A., Hollocher, T.C., (1987) Arch. Biochem. Biophys., 259, pp. 520-526
  • Lockamy, V.L., Shields, H., Kim-Shapiro, D.B., Bruce King, S., (2004) Biochim. Biophys. Acta, 1674, pp. 260-267
  • Reif, A., Shutenko, Z.V., Feelisch, M., Schmidt, H.H.H.W., (2004) Free Rad. Biol. Med., 37, pp. 988-997
  • Tang, G., Wu, L., Wang, R., (2005) Mol. Pharmacol., 67, pp. 1723-1731
  • Taira, J., Misik, V., Riesz, P., (1997) Biochem. Biophys. Acta, 1336, pp. 502-508
  • Terry, K., Hooper, A.B., (1981) Biochemistry, 20, pp. 7026-7032
  • Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y., Tanaka, N., (1997) Nat. Struct. Biol., 4, pp. 276-284
  • Choi, I.K., Liu, Y., Wei, Z., Ryan, M.D., (1997) Inorg. Chem., 36, pp. 3113-3118
  • Hughes, M.N., Cammack, R., (1999) Methods Enzymol., 301, pp. 279-287
  • El-Awady, A.A., Wilkins, P.C., Wilkins, R.G., (1985) Inorg. Chem., 24, pp. 2053-2057
  • Feelisch, M., Stamler, J.S., (1996) Methods in Nitric Oxide Research, , Wiley, Chichester, England (Chapter 33, H.H.W. Schmidt, M. Kelm)
  • Bartusek, M., (1960) Z. Anal. Chem., 173, pp. 193-194
  • Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups. fourth ed., , Wiley-Interscience
  • Kochi, J.K., (1973) Free Radicals, II. , Wiley
  • Corvaja, C., Fischer, H., Giacometti, G.Z., (1965) Phys. Chem. Neue Folge, 45, pp. 1-19
  • Bari, S.E., Martí, M.A., Amorebieta, V.T., Estrin, D.A., Doctorovich, F., (2003) J. Am. Chem. Soc., 125, pp. 15272-15273
  • Suárez, S.A., Martí, M.A., De Biase, P.M., Estrin, D.A., Bari, S.E., Doctorovich, F., (2007) Polyhedron, 26, pp. 4673-4679
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Nast, R., Foppl, I., (1950) Z. Anorg. Allg. Chem., 263, p. 310
  • Del Gaudio, J., La Mar, G.N., (1978) J. Am. Chem. Soc., 100, pp. 1112-1119
  • Marques, H.M., Munro, O.Q., Munro, T., de Wet, M., Vashi, P.R., (1999) Inorg. Chem., 38, pp. 2312-2319
  • Castro, C.E., Jamin, M., Yokoyama, W., Wade, R., (1986) J. Am. Chem. Soc., 108, pp. 4179-4187
  • Stolze, K., Nohl, H., (1989) Biochem. Pharmacol., 38, pp. 3055-3059
  • Yushmanov, V.E., Imasato, H., Tominaga, T.T., Tabak, M., (1996) J. Inorg. Biochem., 61, pp. 233-250
  • Marques, H.M., (2007) Dalton Trans., pp. 4371-4385
  • Batinic-Haberle, I., Spasojevic, I., Hambright, P., Benov, L., Crumbliss, A.L., Fridovich, I., (1999) Inorg. Chem., 38, pp. 4011-4022
  • Feng, D.W., Ryan, M.D., (1987) Inorg. Chem., 26, pp. 2480-2483
  • Laverman, L.E., Ford, P.C., (2001) J. Am. Chem. Soc., 123, pp. 11614-11622
  • Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 7340-7345
  • Kim, C.H., Hollocher, T.C., (1984) J. Biol. Chem., 259, pp. 2092-2099
  • Cooper, J.N., Chilton, J.E., Powell, R.E., (1970) Inorg. Chem., 9, pp. 2303-2304
  • Khin, C., Heinecke, J., Ford, P.C., (2008) J. Am. Chem. Soc., 130, pp. 13830-13831
  • Hughes, M.N., Steadman, G., (1963) J. Chem. Soc., pp. 2824-2830
  • (1997) Inorganic Chemistry in Biology, , Wilkins P.C., and Wilkins R.G. (Eds), Oxford University Press, Oxford, England
  • Hoshino, M., Maeda, M., Konishi, R., Seki, H., Ford, P.C., (1996) J. Am. Chem. Soc., 118, pp. 5702-5707
  • Laverman, L.E., Hoshino, M., Ford, P.C., (1997) J. Am. Chem. Soc., 119, pp. 12663-12664
  • Hoshino, M., Laverman, L.E., Ford, P.C., (1999) Coord. Chem. Rev., pp. 75-102
  • Bonner, F.T., Akhtar, M.J., (1981) Inorg. Chem., 20, pp. 3155-3160

Citas:

---------- APA ----------
Bari, S.E., Amorebieta, V.T., Gutiérrez, M.M., Olabe, J.A. & Doctorovich, F. (2010) . Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds. Journal of Inorganic Biochemistry, 104(1), 30-36.
http://dx.doi.org/10.1016/j.jinorgbio.2009.09.024
---------- CHICAGO ----------
Bari, S.E., Amorebieta, V.T., Gutiérrez, M.M., Olabe, J.A., Doctorovich, F. "Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds" . Journal of Inorganic Biochemistry 104, no. 1 (2010) : 30-36.
http://dx.doi.org/10.1016/j.jinorgbio.2009.09.024
---------- MLA ----------
Bari, S.E., Amorebieta, V.T., Gutiérrez, M.M., Olabe, J.A., Doctorovich, F. "Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds" . Journal of Inorganic Biochemistry, vol. 104, no. 1, 2010, pp. 30-36.
http://dx.doi.org/10.1016/j.jinorgbio.2009.09.024
---------- VANCOUVER ----------
Bari, S.E., Amorebieta, V.T., Gutiérrez, M.M., Olabe, J.A., Doctorovich, F. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds. J. Inorg. Biochem. 2010;104(1):30-36.
http://dx.doi.org/10.1016/j.jinorgbio.2009.09.024