Artículo

Bass, J.I.F.; Alvarez, M.E.; Gabelloni, M.L.; Vermeulen, M.E.; Amaral, M.M.; Geffner, J.R.; Trevani, A.S. "GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA" (2008) Molecular Immunology. 46(1):37-44
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have previously demonstrated that bacterial DNA induces neutrophil activation through a CpG- and TLR9-independent but MyD88-dependent-pathway. In this study we determined that GM-CSF enhances the activation of neutrophils by bacterial DNA. Granulocyte-macrophage colony-stimulating factor increased IL-8 and IL-1β secretion, and CD11b-upregulation induced by single-stranded bacterial DNA. It also enhanced neutrophil IL-8 production induced by double-stranded bacterial DNA, methylated single-stranded DNA, plasmid DNA, and phosphorothioated-CpG and non-CpG-oligodeoxynucleotides. Together these observations indicated that GM-CSF enhances neutrophil responses triggered by bacterial DNA in a CpG-independent fashion. We also found that GM-CSF enhanced the activation of the MAPKs p38 and ERK1/2 induced by bacterial DNA. Moreover, the pharmacological inhibition of these pathways significantly diminished GM-CSF ability to increase neutrophil activation by bacterial DNA. Finally, we observed that GM-CSF was unable to increase the activation of MyD88-/- neutrophils by bacterial DNA. Our findings suggest that GM-CSF modulates the CpG-independent, MyD88-dependent neutrophil response to bacterial DNA, by increasing the activation of the MAPKs p38 and ERK1/2. © 2008 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA
Autor:Bass, J.I.F.; Alvarez, M.E.; Gabelloni, M.L.; Vermeulen, M.E.; Amaral, M.M.; Geffner, J.R.; Trevani, A.S.
Filiación:Departamento de Inmunología, Instituto de Investigaciones Hematológicas, Instituto de Estudios Oncológicos Fundación Maissa, Buenos Aires, Argentina
Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Bacterial DNA; CpG; GM-CSF; Inflammation; MAPK; Neutrophil; bacterial DNA; CD11b antigen; granulocyte macrophage colony stimulating factor; interleukin 1beta; interleukin 8; mitogen activated protein kinase; mitogen activated protein kinase 1; mitogen activated protein kinase 3; mitogen activated protein kinase p38; myeloid differentiation factor 88; oligodeoxynucleotide derivative; phosphorothioic acid; plasmid DNA; single stranded DNA; toll like receptor 9; animal experiment; article; controlled study; CpG island; cytokine release; DNA methylation; enzyme activation; human; human cell; leukocyte activation; male; mouse; nonhuman; priority journal; upregulation; Animals; Antigens, CD11b; CpG Islands; DNA, Bacterial; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Granulocyte-Macrophage Colony-Stimulating Factor; Humans; Interleukin-8; Mice; Mice, Inbred C57BL; Myeloid Differentiation Factor 88; Neutrophil Activation; Neutrophils; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Bacteria (microorganisms)
Año:2008
Volumen:46
Número:1
Página de inicio:37
Página de fin:44
DOI: http://dx.doi.org/10.1016/j.molimm.2008.06.033
Título revista:Molecular Immunology
Título revista abreviado:Mol. Immunol.
ISSN:01615890
CODEN:IMCHA
CAS:interleukin 8, 114308-91-7; mitogen activated protein kinase 1, 137632-08-7; mitogen activated protein kinase 3, 137632-07-6; mitogen activated protein kinase, 142243-02-5; phosphorothioic acid, 10101-88-9, 13598-51-1, 15181-41-6; toll like receptor 9, 352486-49-8, 390883-32-6; Antigens, CD11b; DNA, Bacterial; Extracellular Signal-Regulated MAP Kinases, EC 2.7.1.37; Granulocyte-Macrophage Colony-Stimulating Factor, 83869-56-1; Interleukin-8; Myeloid Differentiation Factor 88; NF-kappa B; p38 Mitogen-Activated Protein Kinases, EC 2.7.1.37
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01615890_v46_n1_p37_Bass

Referencias:

  • Akira, S., Uematsu, S., Takeuchi, O., Pathogen recognition and innate immunity (2006) Cell, 124, pp. 783-801
  • Alvarez, M.E., Fuxman Bass, J.I., Geffner, J.R., Calotti, P.X., Costas, M., Coso, O.A., Gamberale, R., Trevani, A.S., Neutrophil signaling pathways activated by bacterial DNA stimulation (2006) J. Immunol., 177, pp. 4037-4046
  • Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., Molin, S., Tolker-Nielsen, T., A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms (2006) Mol. Microbiol., 59, pp. 1114-1128
  • Arndt, P.G., Suzuki, N., Avdi, N.J., Malcolm, K.C., Worthen, G.S., Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-kinase and Syk-mediated pathways (2004) J. Biol. Chem., 279, pp. 10883-10891
  • Derouet, M., Thomas, L., Cross, A., Moots, R.J., Edwards, S.W., Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1 (2004) J. Biol. Chem., 279, pp. 26915-26921
  • Elias, F., Flo, J., Lopez, R.A., Zorzopulos, J., Montaner, A., Rodriguez, J.M., Strong cytosine-guanosine-independent immunostimulation in humans and other primates by synthetic oligodeoxynucleotides with PyNTTTTGT motifs (2003) J. Immunol., 171, pp. 3697-3704
  • Hailman, E., Lichenstein, H.S., Wurfel, M.M., Miller, D.S., Johnson, D.A., Kelley, M., Busse, L.A., Wright, S.D., Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14 (1994) J. Exp. Med., 179, pp. 269-277
  • Hall-Stoodley, L., Costerton, J.W., Stoodley, P., Bacterial biofilms: from the natural environment to infectious diseases (2004) Nat. Rev. Microbiol., 2, pp. 95-108
  • Hayashi, F., Means, T.K., Luster, A.D., Toll-like receptors stimulate human neutrophil function (2003) Blood, 102, pp. 2660-2669
  • Hoffmann, E., Dittrich-Breiholz, O., Holtmann, H., Kracht, M., Multiple control of interleukin-8 gene expression (2002) J. Leukocyte Biol., 72, pp. 847-855
  • Hoffmann, E., Thiefes, A., Buhrow, D., Dittrich-Breiholz, O., Schneider, H., Resch, K., Kracht, M., MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors (2005) J. Biol. Chem., 280, pp. 9706-9718
  • Holtmann, H., Winzen, R., Holland, P., Eickemeier, S., Hoffmann, E., Wallach, D., Malinin, N.L., Kracht, M., Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways (1999) Mol. Cell. Biol., 19, pp. 6742-6753
  • Ishii, K.J., Akira, S., Innate immune recognition of, and regulation by, DNA (2006) Trends Immunol., 27, pp. 525-532
  • Jozsef, L., Khreiss, T., Fournier, A., Chan, J.S., Filep, J.G., Extracellular signal-regulated kinase plays an essential role in endothelin-1-induced homotypic adhesion of human neutrophil granulocytes (2002) Br. J. Pharmacol., 135, pp. 1167-1174
  • Kawai, T., Akira, S., TLR signaling (2006) Cell Death Differ., 13, pp. 816-825
  • Lorenz, M.G., Gerjets, D., Wackernagel, W., Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria (1991) Arch. Microbiol., 156, pp. 319-326
  • Lorenz, M.G., Wackernagel, W., Bacterial gene transfer by natural genetic transformation in the environment (1994) Microbiol. Rev., 58, pp. 563-602
  • Moscoso, M., Claverys, J.P., Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA (2004) Mol. Microbiol., 54, pp. 783-794
  • Mukaida, N., Okamoto, S., Ishikawa, Y., Matsushima, K., Molecular mechanism of interleukin-8 gene expression (1994) J. Leukocyte Biol., 56, pp. 554-558
  • Nakamae-Akahori, M., Kato, T., Masuda, S., Sakamoto, E., Kutsuna, H., Hato, F., Nishizawa, Y., Kitagawa, S., Enhanced neutrophil motility by granulocyte colony-stimulating factor: the role of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase (2006) Immunology, 119, pp. 393-403
  • Nathan, C., Neutrophils and immunity: challenges and opportunities (2006) Nat. Rev. Immunol., 6, pp. 173-182
  • Palchevskiy, V., Finkel, S.E., Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient (2006) J. Bacteriol., 188, pp. 3902-3910
  • Parilla, N.W., Hughes, V.S., Lierl, K.M., Wong, H.R., Page, K., CpG DNA modulates interleukin 1β-induced interleukin-8 expression in human bronchial epithelial (16HBE14o-) cells (2006) Respir. Res., 7, p. 84
  • Parsek, M.R., Singh, P.K., Bacterial biofilms: an emerging link to disease pathogenesis (2003) Annu. Rev. Microbiol., 57, pp. 677-701
  • Petersen, F.C., Tao, L., Scheie, A.A., DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation (2005) J. Bacteriol., 187, pp. 4392-4400
  • Sasaki, C.Y., Barberi, T.J., Ghosh, P., Longo, D.L., Phosphorylation of RelA/p65 on serine 536 defines an IκBα-independent NF-κB pathway (2005) J. Biol. Chem., 280, pp. 34538-34547
  • Soler-Rodriguez, A.M., Zhang, H., Lichenstein, H.S., Qureshi, N., Niesel, D.W., Crowe, S.E., Peterson, J.W., Klimpel, G.R., Neutrophil activation by bacterial lipoprotein versus lipopolysaccharide: differential requirements for serum and CD14 (2000) J. Immunol., 164, pp. 2674-2683
  • Steinberger, R.E., Holden, P.A., Extracellular DNA in single- and multiple-species unsaturated biofilms (2005) Appl. Environ. Microbiol., 71, pp. 5404-5410
  • Steinmoen, H., Knutsen, E., Havarstein, L.S., Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7681-7686
  • Stetson, D.B., Medzhitov, R., Recognition of cytosolic DNA activates an IRF3-dependent innate immune response (2006) Immunity, 24, pp. 93-103
  • Suzuki, K., Hino, M., Kutsuna, H., Hato, F., Sakamoto, C., Takahashi, T., Tatsumi, N., Kitagawa, S., Selective activation of p38 mitogen-activated protein kinase cascade in human neutrophils stimulated by IL-1β (2001) J. Immunol., 167, pp. 5940-5947
  • Trevani, A.S., Andonegui, G., Giordano, M., Lopez, D.H., Gamberale, R., Minucci, F., Geffner, J.R., Extracellular acidification induces human neutrophil activation (1999) J. Immunol., 162, pp. 4849-4857
  • Trevani, A.S., Chorny, A., Salamone, G., Vermeulen, M., Gamberale, R., Schettini, J., Raiden, S., Geffner, J., Bacterial DNA activates human neutrophils by a CpG-independent pathway (2003) Eur. J. Immunol., 33, pp. 3164-3174
  • Tumpey, T.M., Fenton, R., Molesworth-Kenyon, S., Oakes, J.E., Lausch, R.N., Role for macrophage inflammatory protein 2 (MIP-2), MIP-1α, and interleukin-1alpha in the delayed-type hypersensitivity response to viral antigen (2002) J. Virol., 76, pp. 8050-8057
  • Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W., Haegeman, G., Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1) (2003) EMBO J., 22, pp. 1313-1324
  • Wang, Y., Krieg, A.M., Synergy between CpG- or non-CpG DNA and specific antigen for B cell activation (2003) Int. Immunol., 15, pp. 223-231
  • Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., Mattick, J.S., Extracellular DNA required for bacterial biofilm formation (2002) Science, 295, p. 1487
  • Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., Halbwachs-Mecarelli, L., Neutrophils: molecules, functions and pathophysiological aspects (2000) Lab. Invest., 80, pp. 617-653
  • Yang, F., Tang, E., Guan, K., Wang, C.Y., IKK β plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide (2003) J. Immunol., 170, pp. 5630-5635
  • Yasuda, K., Rutz, M., Schlatter, B., Metzger, J., Luppa, P.B., Schmitz, F., Haas, T., Wagner, H., CpG motif-independent activation of TLR9 upon endosomal translocation of "natural" phosphodiester DNA (2006) Eur. J. Immunol., 36, pp. 431-436
  • Yasuda, K., Yu, P., Kirschning, C.J., Schlatter, B., Schmitz, F., Heit, A., Bauer, S., Wagner, H., Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways (2005) J. Immunol., 174, pp. 6129-6136
  • Yoshinaga, T., Yasuda, K., Ogawa, Y., Takakura, Y., Efficient uptake and rapid degradation of plasmid DNA by murine dendritic cells via a specific mechanism (2002) Biochem. Biophys. Res. Commun., 299, pp. 389-394
  • Zhao, H., Hemmi, H., Akira, S., Cheng, S.H., Scheule, R.K., Yew, N.S., Contribution of Toll-like receptor 9 signaling to the acute inflammatory response to nonviral vectors (2004) Mol. Ther., 9, pp. 241-248

Citas:

---------- APA ----------
Bass, J.I.F., Alvarez, M.E., Gabelloni, M.L., Vermeulen, M.E., Amaral, M.M., Geffner, J.R. & Trevani, A.S. (2008) . GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA. Molecular Immunology, 46(1), 37-44.
http://dx.doi.org/10.1016/j.molimm.2008.06.033
---------- CHICAGO ----------
Bass, J.I.F., Alvarez, M.E., Gabelloni, M.L., Vermeulen, M.E., Amaral, M.M., Geffner, J.R., et al. "GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA" . Molecular Immunology 46, no. 1 (2008) : 37-44.
http://dx.doi.org/10.1016/j.molimm.2008.06.033
---------- MLA ----------
Bass, J.I.F., Alvarez, M.E., Gabelloni, M.L., Vermeulen, M.E., Amaral, M.M., Geffner, J.R., et al. "GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA" . Molecular Immunology, vol. 46, no. 1, 2008, pp. 37-44.
http://dx.doi.org/10.1016/j.molimm.2008.06.033
---------- VANCOUVER ----------
Bass, J.I.F., Alvarez, M.E., Gabelloni, M.L., Vermeulen, M.E., Amaral, M.M., Geffner, J.R., et al. GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA. Mol. Immunol. 2008;46(1):37-44.
http://dx.doi.org/10.1016/j.molimm.2008.06.033